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Maximum consensus is one of the most popular robust criteria for geometric
estimation problems in computer vision. Given a set of measurements X =
{x,-}i.\': 1» the criterion aims to find the estimate 6 that agrees with as many
of the data as possible (i.e., the inliers) up to a threshold &

max |Z|
0, ICX )
subjectto  r;(0) <e Vx; €Z,

where r;(0) is the residual of x;. For example, in triangulation we wish to
estimate the 3D point 6 seen in N views, where X contains the 2D obser-
vations x; of the point and the associated camera matrices P; € R3*4. The
residual 7;(0) is the reprojection error in the i-th view.
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where 8 = (87 1]7, P; 1.5 is the first-two rows of P;, and P;3 is the third
row of P;. The additional constraint Pi,3§ > (0 must be imposed such that
the 3D point lies in front of the cameras. Another example is homography
fitting, where given a set of point matches X' = {(ui,uﬁ)}?]: | across two
views, we wish to estimate the homography 8 € R3*3 that aligns the points.
The residual is
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where @i; = [ulT 1]7, 0y., is the first-2 rows of 6, and 6; is the 3rd row of 6.

In this work, we consider residual functions ;(0) that are pseudo-convex.

This is known to include many other estimation problems in computer vi-
sion. Apart from the above two examples, other problems that involve
pseudo-convex residuals include linear regression, camera resectioning, SfTM
with known rotations, etc. [4, 7].

Random sample consensus (RANSAC) [2] has been the dominant ap-
proach. The method randomly draws p-tuples from X, where p is the min-
imum number of data to instantiate 8. The consensus score |Z| of each
sample O is obtained, and the 0 with the highest score and its consensus set
T are returned. A probabilistic bound on the number of samples required
can be derived as a stopping criterion.

A major shortcoming of randomised methods such as RANSAC is the
lack of absolute certainty that the obtained solution is optimal, or indeed
whether it represents a satisfactory approximation at all. A less recognised
fact is that even if all (’1\7] ) subsets are examined, we may not find the globally
optimal solution 0* to (1), since 6* does not generally correspond to an
estimate from a p-tuple (see below).

Solving (1) exactly is computationally challenging. Several authors pro-
posed methods based on branch-and-bound (BnB) [5, 10]. However, BnB
is typically slow, especially if 0 is high-dimensional. In fact, RANSAC is
suggested to suboptimally preprocess the data (which may cause genuine
inliers to be discarded), before BnB is invoked to refine the result. More
fundamentally, the BnB methods are specialised for linear residuals. For
many vision problems, this entails linearising r;(6) and adopting algebraic
residuals which are not geometrically meaningful.

It has been proven [1, 8] that for various estimation tasks, 6* can be
found as the solution on a subset of X of size d, where d > p and d < N (the
actual value of d depends on the particular problem). Both works proposed
to find 8* by exhaustively searching over all (Z’) subsets of X'. Although the
number of subsets is polynomial w.r.t. N, in realistic problems the number
is impracticably large. Olsson et al. [8] also proposed using RANSAC with
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Figure 1: (a) Our work shows how consensus maximisation can be solved as
a tree search problem. (b) We propose an efficient consensus maximisation
algorithm based on A* search.

an optimality verification step. However, the fact remains that an enormous
number of subsets may need to be sampled.

Due to the much greater computational expense, currently available
global methods are not competitive against RANSAC and its variants. In
this paper, we make significant progress towards solving (1) exactly and
efficiently. Leveraging on the framework of LP-type methods [6, 9], we
show how maximising consensus can be casted as a tree search problem.
Figure 1(a) illustrates this idea.

We then propose an algorithm based on A* search [3] to traverse the
tree. Similar in spirit to [1, 8], we aim to find the optimal data subset.
However, instead of sampling or enumerating the subsets, our algorithm de-
terministically locates the best subset. The A* technique ensures that only
a tiny fraction of available subsets need to be explored. Figure 1(b) illus-
trates our method. Despite its combinatorial nature, our algorithm is fast -
on several common estimation problems, our algorithm is orders of magni-
tude faster than previous exact methods for maximum consensus. Further,
our method does not require linearising the residual.
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