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Abstract

Image quality assessment (IQA) tries to estimate human
perception based image visual quality in an objective man-
ner. Existing approaches target this problem with or without
reference images. For no-reference image quality assess-
ment, there is no given reference image or any knowledge
of the distortion type of the image. Previous approaches
measure the image quality from signal level rather than se-
mantic analysis. They typically depend on various features
to represent local characteristic of an image.

In this paper we propose a new no-reference (NR) im-
age quality assessment (IQA) framework based on semantic
obviousness. We discover that semantic-level factors affect
human perception of image quality. With such observation,
we explore semantic obviousness as a metric to perceive
objects of an image. We propose to extract two types of
features, one to measure the semantic obviousness of the
image and the other to discover local characteristic. Then
the two kinds of features are combined for image quality
estimation. The principles proposed in our approach can
also be incorporated with many existing IQA algorithms to
boost their performance. We evaluate our approach on the
LIVE dataset. Our approach is demonstrated to be supe-
rior to the existing NR-IQA algorithms and comparable to
the state-of-the-art full-reference IQA (FR-IQA) methods.
Cross-dataset experiments show the generalization ability
of our approach.

1. Introduction
This paper proposes a framework based on semantic ob-

viousness to predict the quality of distorted images to match
human perception of image quality. This work targets at the
non-distortion-specific NR-IQA problem, which is thought
as the most challenging IQA problem since neither knowl-
edge of the distortion type nor the reference image is avail-
able. Image quality is a fundamental metric in many com-
puter vision and image processing applications. For exam-

ple, image quality can be used to measure video quality [25]
and to guide an image compression scheme [6].

According to the existence of non-distorted reference
images, IQA algorithms can be classified into three cat-
egories: full-reference IQA (FR-IQA), no-reference IQA
(NR-IQA) and reduced-reference IQA (RR-IQA).

FR-IQA methods [20, 29, 26, 24] require the correspond-
ing non-distorted reference image to predict visual quality
of a distorted image. Most of these algorithms estimate
visual image quality based on the difference between dis-
torted image and the corresponding reference image. Re-
cent FR-IQA methods usually adopt a top-down frame-
work [11, 29, 24], trying to model the function of hu-
man visual system based on some global assumptions on
it. Examples of state-of-the-art FR-IQA algorithms include
FSIM [29], VIF [20], VSNR [3]. With reference images, the
image quality scores produced by FR-IQA methods have
high correlation with human perceptual quality.

NR-IQA measures try to estimate the human percep-
tual quality by extracting discriminative features from dis-
torted images. Most of the traditional NR-IQA algo-
rithms [16, 15, 19, 3, 29, 22, 8] design features based
on Natural Scene Statistics (NSS). NSS based approaches
process images with certain type of filters, then the re-
sponses are used to extract features. Some typical trans-
forms and filters include DCT transform [15, 19], wavelet
transform [16, 3] and Gabor filter [29]. NR-IQA can be fur-
ther classified into two categories: distortion-specific NR-
IQA and non-distortion-specific NR-IQA.

Existing IQA methods measure the image quality from
signal level rather than semantic sense. FR-IQA meth-
ods like [20, 29], NR-IQA algorithms like [15, 3], NSS-
based approaches like [15, 29] and training-based methods
like [28, 28], even the CNN architecture in [10] all depend
on features based on pixel-level or patch-level local char-
acteristic. However, the analysis of eye tracking data [9]
shows that most of the time human focus on object-like re-
gions when looking at an image. Therefore, some object-
level factors should be explored for image quality assess-
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Figure 1. Framework of image quality assessment with semantic obviousness metric .

ment, and that’s the fundamental idea of our approach.

In this paper we propose an semantic obviousness based
framework to measure image quality. We define semantic
obviousness as a metric of how easily can we perceive ob-
jects of an image. Any type of distortion may affect the
semantic obviousness of an image. We use both seman-
tic obviousness feature and local feature in our approach.
First, we design a discriminative feature to represent se-
mantic obviousness of an image. We extract object-like re-
gions from an image and then obtain a semantic obvious-
ness descriptor based on these regions. Second, only the
high-scored object-like regions are used to extract features
to measure pixel-level local characteristic. Local features
are obtained by a codebook based method. We randomly
select raw patches to generate local features. Unlike previ-
ous methods which use saliency response to weight differ-
ent image regions, the patches get an automatic weight in
our method. The reason is that object-like regions overlap
with each other, so that patches from overlapped regions are
more likely to be chosen. Besides, we propose a simple yet
effective method to increase the number of training samples
when the labeled images of IQA dataset is too few to get
the model well trained. It is notable that all these princi-
ples we mentioned above are algorithm-independent, which
means they can be readily incorporated into many existing
IQA methods to improve the performance.

The remainder of this paper is organized as follows. In
Section 2, we review the related work on NR-IQA and
generic object detection. Section 3 introduces our frame-
work in details. Section 4 discusses the experiment details
and the analysis of results and parameters. We conclude this
paper in the last section.

2. Related Work
Our method to extract local feature is based on some pre-

vious work and the proposed semantic obviousness is re-
lated to generic object detection.

2.1. No-reference Image Quality Assessment

NR-IQA methods used to depend on hand-crafted fea-
tures. Most of general NR-IQA methods depend on filter-
ing techniques and various transformations like Gabor fil-
tering, DCT transform, wavelet transform to extract fea-
tures, which are not originally designed for IQA. Recent
advances in machine learning such as convolutional neu-
ral network, have revealed the potential to learn discrimina-
tive features from raw patches. Ye and Doermann [27] first
used codebook in NR-IQA algorithm. They use Gabor-filter
based local feature to represent image and use the average
of quality scores of codewords to obtain image quality. Al-
though promising performance is achieved, it relies on a
subset of labeled data to construct the codebook. Codebook
based NR-IQA methods are also used in CORNIA [28]. In
that work, the codebook is constructed with unlabeled data
and features are learned directly from normalized raw im-
age patches without any filters. Soft assignment and max-
pooling are also adopted in this work. Kang et al. [10]
proposed a new convolutional neural network architecture
for NR-IQA. Their network extracts discriminative features
from 32× 32 patches with a single convolutional layer and
a pooling layer, and then estimates image quality score of
each patch. They average the scores of all the 32 × 32
patches to obtain a quality estimation for the whole image.
The works above reveal that it’s possible to obtain discrim-
inative features directly from raw image patches and ma-
chine learning techniques like soft encoding and pooling are
useful for IQA frameworks.



2.2. Generic Object Detection

Inspired by human visual system which can perceive ob-
jects before identifying them, researchers [2, 1, 7, 4] try to
design an objectness detector which is generic over cate-
gories. These objectness measures are typically applied to
reduce the number of patches that classifiers need to process
in a sliding window fashion. Cheng et al. [4] proposed an
extremely fast generic object detector: BING. It is designed
to detect generic objects with well-defined boundary. The
computation of BING consists of several simple atomic op-
erations (e.g. ADD, BITWISE SHIFT, et al.), so it can run
on a single machine at a speed of 300 images per second.

Generic object detection is closely related to bottom up
attention (saliency), which is used by some full-reference
IQA methods [23, 13]. Tong et al. [23] proposed a NR-IQA
algorithm based on saliency map analysis. In their method,
the contribution of any region to the global image quality
score of an image is weighted by a function of its saliency.
[17] shows that the improvement of IQA algorithms is not
guaranteed if saliency response is simply used as a weight-
ing term.

3. Semantic Obviousness based Framework for
NR-IQA

Our image quality estimation framework is illustrated in
Figure 1. All the object-like regions are extracted by an
objectness detector [4]. From these regions we extract two
kinds of features: one to measure the global semantic ob-
viousness of the image and one to discover local charac-
teristic. After that, the global and local features are fused
to be more discriminative. The final image quality score is
obtained by a regression SVM.

3.1. Object-like Region Detection

Computation efficiency is an important factor when ap-
plying NR-IQA to other computer vision applications. So
we choose the objectness detector BING [4], which is ex-
tremely fast and shows high object detection rate and good
generalization ability. The work shows that generic objects
with well-defined closed boundaries share similar appear-
ance when looking at the norm of the gradients, after re-
sizing their corresponding image patches to small fixed size
(e.g. 8 × 8 in BING). Therefore, BING resizes image win-
dows to 8× 8 and uses the norm of gradients as a 64D fea-
ture to learn a generic objectness measure. The top-scored
object-like regions of a test image is shown in Figure 2. As
shown in Figure 2, not all the extracted regions are actual
objects, but they are distinct from the neighbor regions so
that they can attract more attention.

3.2. Feature Extraction

Semantic Obviousness Feature Extraction: For each
image in the dataset, we extract all its object-like regions,
each with a detection score. The detection score is a met-
ric of the region’s possibility of being an object. Distorted
regions are more likely to get lower detection scores com-
pared to their corresponding non-distorted regions. Typi-
cally, the objectness detector yields more than 3,000 object-
like regions. These regions are sorted in descending order
based on the corresponding detection scores. We use Inter-
section over Union (IoU) to measure the overlapping ratio
between two regions. IoU is defined as follow:

IoU =
Sa ∩ Sb

Sa ∪ Sb
(1)

where Sa denotes the area of region a, Sb denotes the area
of region b.

To reduce the redundancy of these regions, Non-
Maximal Suppression (NMS) is performed. A region is re-
moved if its IoU is larger than a threshold α with respect
to a region with greater score. The semantic obviousness
feature X = [x1, x2, . . . , xK ]T consists of the detection
scores of the top K object-like regions, where xi is the de-
tection score of the ith region. Distribution of these detec-
tion scores contains information about the semantic obvi-
ousness. For example, the mean of K scores can basically
reflect an image’s distortion degree (see experimental re-
sults in Section 4.3 ).

Local Feature Extraction: Unlike previous ap-
proaches [14, 11, 15], we extract local descriptors from the
object-like regions instead of the whole image. Since an
image contains a large number of object-like regions and
they typically overlap each other. Only theN top-scored re-
gions are selected using the NMS strategy mentioned above.
We denote the set of these regions as S. Then M different
B×B raw image patches are uniformly and randomly sam-
pled from S. Each patch is normalized by the mean and de-
viation of its elements. For each patch, we concatenate its
columns to generate a vector as its descriptor. As a result,
for S, we obtain a local descriptor Y = [y1, y2, . . . , yM ],
where yi ∈ Rd, d = B × B. To reduce correlation be-
tween features, we apply ZCA whitening [5] on the local
descriptor Y .

Since the sampling process is in a random manner, image
patches from overlapped regions are more likely to be cho-
sen. That means different patches are weighted automati-
cally based on their probability of belonging to an object
region.

Training Sample Augmentation: An important prob-
lem associated with the training based IQA algorithms is
the small number of training images. For example, Ye et
al. [28] trained a codebook based NR-IQA model on LIVE
IQA dataset. Their quality score is the output of a SVM



Figure 2. Images (on the left) and extracted object-like regions (on the right)

whose input is a feature of dimension 20000 × 1. LIVE
dataset contains only 779 distorted images of 5 distortion
types. For distortion-specific experiment, 80% images of
the distortion type are used as training set, namely only
about 128 training samples for each distortion type. As a
result, it may suffer the lack of enough training samples,
which is likely to incur over-fitting problem.

To address this problem, we extract E (E > 1) features
from a training image by simply repeat the feature extrac-
tion process E times. Let SN be the number of patches in
extracted region set S of which each feature uses only M
randomly selected patches. In our experimental setting, SN

is 40+ times larger than M (e.g. SN > 3, 000, 000,M =
50, 000), so the overlap between E features is negligible.

3.3. Local Feature Encoding

Previous works [28, 27] have shown that codebook based
approach can learn efficient features for image quality mea-
suring. We follow this idea and encode the extracted local
feature to a codebook constructed on an unlabeled dataset.

Codebook Construction: We followed the codebook
construction method introduced in [28], and construct our
codebook on an unlabeled dataset. For all distorted images
of the dataset, B × B raw patches are extracted and then
normalized and whitened. These patches are then clustered
by the K-means algorithm. The constructed codebook is a
matrix Dd×W = [d1, d2, . . . , dW ], where di(di ∈ Rd, d =
B ×B) are normalized cluster centroids.

The database used to construct codebook is CSIQ IQA
dataset [12]. It consists of 30 reference images and each
is distorted by 6 types of distortions at 4 to 5 degradation
levels. There are six types of distortions: JPEG, JP2k,
global contrast decrements, additive pink Gaussian noise

and Gaussian blurring. The reference images of CSIQ has
no overlap with LIVE or TID2008.

Encoding: Local features are quantized by performing
soft-assignment coding on the codebook D. The similarity
between the ith local feature yi and the jth codeword dj is
computed by their dot-product as: si,j = <yi, dj>. Local
feature yi is encoded as follows [28]:

ci =[max(si,0, 0), . . . ,max(si,W , 0),

max(−si,1, 0), . . . ,max(−si,W , 0)]T
(2)

3.4. Feature Pooling

In the encoding step, we get a coefficient ma-
trix C2W×M = [c1, c2, . . . , cM ], where ci =
[ci,1, ci,2, . . . , ci,2W ]T is obtained by Equation(2). We
convert the matrix to a vector with pooling technique for
the use of our regression model. Pooling is usually used
to fuse features of same type from different regions of an
image in machine learning algorithms (e.g. CNN). It can
efficiently cut down the length of feature thus to prevent
over-fitting and reduce amount of computation. Besides,
the feature generated by pooling is translation invariant
since patch details are hidden. Max-pooling is the most
commonly used method. We perform max-pooling on
each row of the coefficient matrix. After pooling, we get a
feature in the form of:

Z = [z1, z2, . . . , z2W ]T (3)

where zi is the maximum of the ith row in coefficient matrix
C2W×M . The final feature Z represents the local character-
istic of the image.



3.5. Feature Fusion

After all these steps, we get two features for an input
image: X measures the semantic obviousness and Z rep-
resents the local characteristic. Semantic obviousness is a
metric of how easily can human perceive objects of an im-
age. It measures image quality on a semantic level and is
basically consistent with human perception of image qual-
ity (see analysis in 4.3). Some local distortions may not
have significant influence on semantic obviousness, so we
also adopt local features to obtain this kind of information.
The combination of the two kinds of features enables our
approach to measure image quality both on semantic and
pixel level. The final descriptor F is in the form as follows:

F(K+2W )×1 = [x1, . . . , xK , z1, . . . , z2W ]T (4)

3.6. Regression

After sorting, NMS, encoding and pooling, non-
linearities are introduced to the F . Linear models can be
applied to non-linear features to obtain promising results in
many applications, such as CNN (the output layer), classi-
fication algorithms [5] and IQA [27]. We use support vec-
tor machine (SVM) regression on the feature F with a lin-
ear kernel. Non-linear kernels (RBF) are also tested, and
there is no significant improvement in performance. So lin-
ear SVM is adopted for efficiency. The output of regression
is the final quality score.

4. Experiment
In this section, we first introduce the experimental setting

in Section 4.1. Then, in Section 4.2 we study the impact of
key parameters. Experimental results on LIVE dataset are
shown in Section 4.3. In Section 4.4 cross dataset evaluation
is performed. We incorporate our methods with other IQA
methods and show the performance in Section 4.5;

4.1. Experimental Settings

To evaluate the proposed algorithm, we conduct experi-
ments on the following two IQA benchmark datasets.

LIVE [21]: This is the most commonly used dataset for
the evaluation of IQA algorithms. LIVE consists of 29 ref-
erence images with 779 distorted images. There are five dif-
ferent types of distortions: JPEG2000 (JP2K), JPEG, white
noise (WN), Gaussian blurring (BLUR) and fast fading
Rayleigh channel distortion (FF). A different mean opin-
ion score (DMOS) is provided for each distorted image.
DMOS is in the range [0, 100], and a higher DMOS stands
for poorer visual quality.

TID2008 [18]: It consists of 25 reference images with
1700 distorted images from 17 different distortion types at
4 degradation levels. Some of the reference images are from
the LIVE database. Four distortion types of this dataset are

shared with LIVE: JPEG, JP2k, WN and BLUR. A mean
opinion score is provided for each image. MOS is in the
range [0, 9], and a higher MOS indicates higher visual qual-
ity.

Evaluation Method: Following the previous methods,
we use two metrics to evaluate the performance of the pro-
posed method: Linear Correlation Coefficient (LCC) and
Spearman Rank Order Correlation Coefficient (SROCC).
LCC is used to measure the linear dependence between true
scores and the predicted quality scores. SROCC measures
the strength of association between the predicted scores and
true scores according to their monotonic relationship. Given
n distorted images, the human perceptual scores V and the
predicted scores P , Vi and Pi are converted to their ranks
vi and pi, and SROCC value is computed from:

SROCC = 1− 6
∑
d2i

n(n2 − 1)
(5)

where di = vi − pi is the difference between ranks.
The experimental results we listed are obtained by 100

train-test iterations, and in each iteration 80% of the refer-
ence images and their distorted versions are randomly se-
lected as training set and the remaining 20% as testing set.

4.2. Impact of Parameters

In the proposed method, some parameters are important
for the performance. In this section, we’ll discuss the im-
pact of those parameters. We’ll focus on some parameters
related to generic object detection and semantic obvious-
ness feature extraction. Size of raw patches is fixed at 7×7,
codebook size is set to 10000 and IoU threshold α is fixed
to 0.8 when perform Non-Maximal Suppression to remove
overlapped object-like regions. The parameter E is set to 3
since we find best performance is obtained when 3 local fea-
tures are obtained from one image for training. By default,
when we focus on one parameter, all the other parameters
are set to their optimal values. All the results in this section
are obtained on LIVE dataset.

Dimension of Semantic Obviousness Feature: Our se-
mantic obviousness feature X = [x1, . . . , xK ] is composed
of detection scores of the top K object-like regions. To
choose the optimal value for K, we extract 2000 object-
like regions for all images, and show the variances of de-
tection scores in Figure 3. As shown in the figure, when
K > 1000, the variance of detection scores is almost zero.
In other words, detection scores of regions out of the top
1000 are less informative. Besides, Cheng et al. [4] has
shown that 1000 regions generated by BING can cover
nearly all (96.2%) potential object regions. Due to these
reasons, we set K to 1000 in all our experiments.

Number of Object-like Regions for Local Feature Ex-
traction: In the proposed approach, we only use patches
from N top-scored regions to extract local features. To
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get the proper value of N , we fix the other parameters and
test the algorithm with N set to 10,20,...,70. As shown in
Figure 4, the best performance is obtained when about 50
object-like regions are extracted. When N is too small, the
performance is poor because most area of the image remains
unused. On the other hand, if N is too large, some object
regions get over-weighted, which will cause a decrease in
performance too.

Number of Patches for Local Feature Extraction In
our feature extraction, M raw patches are randomly sam-
pled from the N object-like regions to obtain a feature to
represent the local characteristic of the image. Various val-
ues of M is tested and the result is shown in Figure 5. As
shown in the figure, better performance is achieved when
more patches are extracted since more information is pre-
served. However, more patches will result in higher com-
putational cost. In our experiment, we set M to 50,000 for
the balance between performance and computational effi-
ciency.

4.3. Evaluation on LIVE

Typically, NR-IQA methods are evaluated on the LIVE
dataset for distortion-specific and non-distortion-specific
experiments. For the former, only distorted images of the
specific distortion are trained and tested, while for the latter
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all images of all distortions are trained and tested together.
Table 1 shows our experimental results. The results of

previous state-of-the-art NR-IQA and FR-IQA methods are
also listed. Results for NR-IQA methods DIIVINE [16],
BLIINDS-II [19], BRISQUE [14], CORNIA [28] and
CNN [10] are taken from the original paper. CNN takes
60% of the dataset for training, 20% for validation and
20% for testing. All the others takes 80% of of the dataset
for training, 20% for testing. Results for FR-IQA meth-
ods PSNR, SSIM and FSIM [29] are taken from [10]. The
range of quality scores generated by FR-IQA algorithms are
different from reference DMOS scores. In FR-IQA algo-
rithms, the predicted scores are mapped to the certain range
by a non-linear logistic function as follows:

Qp = β1(
1

2
− 1

exp(β2(Q− β3))
) + β4Q+ β5 (6)

Q is the quality score obtained by IQA algorithm and Qp is
the human perceptual quality (DMOS).

As shown in Table 1, the proposed SOM method
achieves promising results in both distortion-specific (DS)
experiments and non-distortion-specific (NDS) experi-
ments. In DS experiments, our approach obtains promising
results on all the five distortions, especially on white noise
(WN), Gaussian blur (BLUR) and fast fading (FF). In NDS
experiments, our approach achieves state-of-the-art result
when compared to other NR-IQA and FR-IQA methods.

We owe the good performance of SOM to the combina-
tion of local characteristic feature and the semantic obvi-
ousness. The former has been adopted by many IQA al-
gorithms and is able to represent image quality on pixel or
signal level. The proposed semantic obviousness, however,
measures image quality from human perspective rather than
signal level.

We can notice from Table 1 that SOM performs relatively
poor on JP2K and JPEG. Both JP2K and JPEG cause block-
iness in local regions which leads to worse detection perfor-



SROCC JP2K JPEG WN BLUR FF ALL
PSNR 0.870 0.885 0.942 0.763 0.874 0.866
SSIM 0.939 0.946 0.964 0.907 0.941 0.913
PSIM 0.970 0.981 0.967 0.972 0.949 0.964

DIIVINE 0.913 0.910 0.984 0.921 0.863 0.916
BLIIDNS-II 0.929 0.942 0.969 0.923 0.889 0.931
BRISQUE 0.914 0.965 0.979 0.951 0.877 0.940
CORNIA 0.943 0.955 0.976 0.969 0.906 0.942

CNN 0.952 0.977 0.978 0.962 0.908 0.956
SOM 0.947 0.952 0.984 0.976 0.937 0.964

SOM-L 0.945 0.949 0.979 0.971 0.928 0.961
LCC JP2K JPEG WN BLUR FF ALL
PSNR 0.873 0.876 0.926 0.779 0.870 0.856
SSIM 0.921 0.955 0.982 0.893 0.939 0.906
PSIM 0.910 0.985 0.976 0.978 0.912 0.960

DIIVINE 0.922 0.921 0.988 0.923 0.888 0.917
BLIINDS-II 0.935 0.968 0.980 0.938 0.896 0.930
BRISQUE 0.923 0.973 0.985 0.951 0.903 0.942
CORNIA 0.951 0.965 0.987 0.968 0.917 0.935

CNN 0.953 0.981 0.984 0.953 0.933 0.953
SOM 0.952 0.961 0.991 0.974 0.954 0.962

SOM-L 0.950 0.957 0.988 0.969 0.945 0.958

Table 1. SROCC and LCC on LIVE. Italicized are FR-IQA

mance of our gradient-based detector. We’ll try some other
detectors in the future work.

Effectiveness of Semantic Obviousness
In Table 1, we denote the result with only local features

as SOM-L. As we can see, if only local features are used,
we’ll get an obvious decrease in performance.

We design some extra experiments to further demon-
strate the effectiveness of the the proposed semantic obvi-
ousness. In Figure 6(a) we show several distorted images
from two different distortion types in LIVE dataset. The
four images in the upper row are from the JPEG distortion
and the four images in the bottom row are from fast fading
(FF) distortion. In both rows, images are arranged with their
quality scores decrease from (a) to (d). The top object de-
tection scores of JPEG and FF distorted images are shown
in Figure 6(b) and Figure 6(c) respectively. Only top-30
detection scores of each image are plotted for the conve-
nience of our observation. As shown in the figure, images
with a high quality score typically get higher object detec-
tion scores. We evaluate this correlation on the dataset, and
find it’s consistent for most of the cases. That’s to say, the
distribution of object scores contains useful information for
image quality estimation. Based on such observation, se-
mantic obviousness feature is constructed by the top object
detection scores of the image.

4.4. Cross Dataset Evaluation

We test the generalization ability of our approach fol-
lowing previous NR-IQA methods [14, 10, 28]. We train
our model on LIVE dataset and test the performance on
TID2008. Only images of the four distortions shared by
LIVE and TID2008 are tested in this experiment [10, 28].

BRISQUE CORNIA CNN SOM
SROCC 0.882 0.892 0.920 0.923

LCC 0.892 0.880 0.903 0.899

Table 2. The results of different methods on TID2008. The models
are trained on LIVE dataset

The DMOS scores of LIVE are in the range1 [0, 100], while
MOS scores in TID2008 range from 0 to 9. We map the
predicted scores to the MOS range by adopting the same
method in [10, 28]. In each training-testing iteration, 80%
of the data is used to fit the regression function (see Equa-
tion 6) and 20% is used for evaluation. The result obtained
in 100 iterations is shown in Table 2. The proposed SOM
achieves promising results on TID2008 with the model
trained on LIVE dataset, which shows our method is gener-
alizable.

4.5. Incorporation with Other IQA methods

Some techniques we adopted in our framework can be
easily generalized to other FR-IQA or NR-IQA algorithms.
To demonstrate this, we combine the semantic obvious-
ness metric with previous IQA methods, such as PSNR,
SSIM [24] and BRISQUE [15]. For the full-reference al-
gorithms PSNR and SSIM, we extract N top-scored object-
like regions of each reference image. For each region, the
corresponding region in the distorted image is extracted
to obtain a predicted quality score. The scores of N re-
gions is averaged to represent the image quality of the
whole distorted image. The same non-linear logistic regres-
sion function (Equation 6) is used to map predicted scores
to the range of DMOS. For the non-reference algorithm
BRISQUE, we extract top N object-like regions for each
distorted image and average the predicted scores of these
regions to obtain the quality score of the whole distorted
image. All parameters of the above algorithms are set to
default. The results of the original algorithms and their ob-
ject based versions are shown in Table 3. The experiments
are performed on LIVE dataset with all the distorted im-
ages. The parameter N is set to 10, and better results may
be obtained with a different value.

As shown in Table 3, by incorporation with generic ob-
ject detection, the performance of existing methods can get
obvious improvement. It’s possible to obtain better boost
of performance if we integrate object detection into these
algorithms rather than simply averaging the scores of these
detected regions.

1Actually, in the latest release of LIVE dataset, DMOS scores are re-
aligned and thus 21 scores exceed 100.
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(b) Detection scores of JPEG distorted images
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(c) Detection scores of FF distorted images

Figure 6. Example of distorted images and object scores of their object-like regions

SROCC LCC
PSNR 0.872 0.867

PSNR+SOM 0.885 0.874
SSIM [24] 0.913 0.906

SSIM+SOM 0.933 0.922
BRISQUE [15] 0.940 0.942

BRISQUE+SOM 0.952 0.949

Table 3. The performance of three existing IQA algorithms with-
out and with semantic obviousness metric

5. Conclusion

In this paper, we present a simple, effective and general-
izable framework for general-purpose non-reference image
quality assessment. Our semantic obviousness based algo-
rithm measures the image quality from both signal level
and semantic sense. The predicted image quality of our
method demonstrates high consistency with human percep-
tual quality. Our method outperforms the state-of-the-art
NR-IQA methods and is comparable to the FR-IQA meth-
ods. We also demonstrate that the techniques adopted in
our approach can be incorporated to boost the performance

of existing FR-IQA and NR-IQA methods. More power-
ful object detectors can be exploited to improve the perfor-
mance.
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