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Continuous-wave time-of-flight (ToF) cameras show great promise as low-
cost depth image sensors in mobile applications. However, they also suf-
fer from several challenges, including limited illumination intensity, which
mandates the use of large numerical aperture lenses, and thus results in a
shallow depth of field, making it difficult to capture scenes with large vari-
ations in depth. Another shortcoming is the limited spatial resolution of
currently available ToF sensors.

In this paper, we address this problem by introducing a new computa-
tional method to simultaneously remove defocus blur and increase the res-
olution of off-the-shelf ToF cameras. We do this by solving a semi-blind
deconvolution problem, where prior knowledge of the blur kernel is avail-
able. Unlike past ToF deblurring techniques, our approach applies sparse
regularizers directly to the latent amplitude and depth images, and supports
deblurring ToF images captured with multiple frequencies, phases or expo-
sure time.

Continuous-wave ToF sensors are designed to have an image formation
model that is linear in amplitude a, but non-linear in depth z, such that the
captured raw sensor data is given as

a◦g(z)≈ a◦ ei( 4π f
c ·z), (1)

where ◦ represents component-wise multiplication of two vectors, f repre-
sents the frequency of the continuous-wave modulation, and c is the con-
stant speed of light. The function g(z) can either be calibrated, or, more
commonly, is simply approximated by the complex-valued function from
Eq. (1).

We aim to compute a solution to the following ill-posed inverse prob-
lem:

b = SK(z)(a◦g(z)) , (2)

where the complex-valued vector b represents the raw ToF measurements,
the real-valued matrix S is a downsampling operator, and the real-valued
matrix K(z) represents the spatially-varying blur kernel for a given depth
map z. The problem is ill-posed because the matrix SK(z) is usually not
invertible, and semi-blind because the matrix K(z) is known at each depth
z. In past work, S is assumed to be the identity matrix.

Because this inverse problem is ill-conditioned, it’s critical to choose
appropriate regularizers to reflect prior information on the solution (i.e.,
sparse edges). Godbaz et al. [3] proposed differential priors that operate
on the complex ToF image representing the cosine model, but it remains un-
clear what a good regularizer should even look like in this space. We instead
choose to regularize our solution in the amplitude and depth map space di-
rectly. In this paper, we use the second-order total generalized variation [2]
for both the amplitude and depth, as shown in Eq. (3) and (4). We show this
unified regularization is simple and effective.

Φ(a) = min
y

λ1||∇a−y||1 +λ2||∇y||1 (3)

Ψ(z) = min
x

τ1||∇z−x||1 + τ2||∇x||1 (4)

Eq. (5) shows the objective function we aim to minimize. The quadratic
term represents a data-fitting error, assuming zero-mean Gaussian noise in
the measurements.

(a,z) = argmin
a,z
||b−SK(a◦g(z)) ||22 +Φ(a)+Ψ(z) (5)

a ◦ g(z) in Eq. (1) is highly nonlinear regarding to z. To reduce the com-
putation complexity in this nonlinear problem, the algorithm splits the data-
fitting term in the objective into a linear least square and a pixel-wise sep-
arable nonlinear least square (LSQ), as in Eq. (6). The scalar ρ defines the

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

(a) Naive a (b) Our a

(c) Naive z (d) Our z
Figure 1: Results on the Character scene. The naive results are generated by
the built-in software of ToF cameras. Comparisons on the cropped regions
are shown in Figure 2.

Figure 2: Two insets of the results on the Character scene in Figure 1. From
left to right shows the result of the naive method, Godbaz et al. [3], ours w/o
superresolution, and ours with 2x superresolution.

relative weight of the splitting term.

(a,z) = argmin
a,z,c

linear LSQ for c︷ ︸︸ ︷
||b−SKc||22 +

separable nonlinear LSQ for z︷ ︸︸ ︷
ρ||c−a◦g(z)||22 + Φ(a)+Ψ(z) (6)

The algorithm alternatively estimates c, a and z, and update the blur
kernel matrix K at the end of each iteration according to currently estimated
z. The subproblems of estimating a and z are solved using the alternating
direction method of multipliers (ADMM [1]).

Figure 1 and 2 show example results and comparisons with the state-
of-the-art. Our method produces much higher quality amplitude and depth,
in terms of suppressing the noise, recovering sharp features and reducing
flying pixels.
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