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Figure 1: Focal plane array-based compressive sensing (FPA-CS) camera
architecture: A 64× 64 SWIR sensor array is equivalent to 4096 single
pixel cameras (SPCs) operating in parallel. This results in vastly superior
spatio-temporal resolutions against what is achievable using the SPC or a
traditional camera.

Cameras for imaging in short and mid-wave infrared spectra are signif-
icantly more expensive than their counterparts for visible imaging. For ex-
ample, a cellphone camera with a several megapixel sensor costs a few dol-
lars, but a megapixel sensor for short-wave infrared (SWIR) imaging costs
tens of thousands dollars. As a result, high-resolution imaging beyond the
visible spectrum remains out of reach for many consumers.

Over the last decade, compressive sensing (CS) [1] has emerged as
a useuful technology for designing high-resolution imaging systems us-
ing low-resolution sensors. For instance, a single-pixel camera (SPC) uses
a single-pixel detector and a digital micromirror device (DMD) to record
coded measurements of a high-resolution image [3]. A computational re-
construction algorithm is then used to recover the high-resolution image
from the coded measurements. Unfortunately, the measurement rate of an
SPC is insufficient for imaging at high spatial and temporal resolutions [5].

In this paper, we present a focal plane array-based compressive sensing
(FPA-CS) architecture that achieves high spatial and temporal resolutions
using inexpensive, low-resolution sensors. Our proposed architecture can
be viewed as an array of SPCs working in parallel, thereby increasing the
measurement rate, and consequently, the achievable spatio-temporal resolu-
tion of CS-based cameras. We develop a proof-of-concept prototype SWIR
video camera using a low-resolution sensor with 64× 64 pixels; the proto-
type provides a 4096× increase in measurement rate compared to the SPC,
and for the first time, achieves megapixel resolution at video rate using CS
techniques.

Our prototype FPA-CS camera is constructed using a low-resolution
sensor array of 64×64 pixels, each observing a 16×16 patch of micromir-
rors. The DMD patterns and sensor readout timings are synchronized to
record modulated, low-resolution images at a frame rate Fs = 480 fps. The
sensor image at time t can be described as yt = Atxt , where yt is a vec-
tor with 4096 measurements, xt represents the high-resolution image at the
DMD plane, and the matrix At encodes modulation of xt with the DMD
pattern and mapping onto the SWIR sensor pixels. To reconstruct video
at a desired frame-rate, say Fr fps, we divide low-resolution sensor im-
ages into sets of T = Fs/Fr measurements, all of which correspond to the
same high-resolution image. Suppose the kth set correspond to yt = Atxt for
t = (k−1)T +1, . . . ,kT ; we assume that xt = xk and stack all the yt and At in
the kth set in yk and Ak, respectively. Our goal is to reconstruct the xk from
the noisy and possibly under-determined sets of linear equations yk = Akxk.

This is an extended abstract. The full paper is available at the Computer Vision Foundation
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Figure 2: Selected frames from reconstructed SWIR videos. Each frame in
the moving car videos is reconstructed using 16 captured images; compres-
sion factor α = 16, and a consequently 32-fps frame rate. Each frame in the
moving hand videos is reconstructed using 22 captured images; compres-
sion factor α = 11.6, and a consequently 21.8-fps frame rate. Both videos
are reconstructed using 3D-TV prior. XT and YT slices for both videos are
shown to the right of the images.

Natural images have been shown to have sparse gradients. We can view
a video signal as a 3D object that consists of a sequence of 2D images,
and we expect pixels in each image to be similar to their neighbors along
horizontal, vertical, and temporal directions. To exploit the spatio-temporal
similarity in a video signal, we can use priors for sparse spatio-temporal
gradients, and solve an optimization problem of the following form for
reconstruction[4]:

(TV) x̂ = argmin
x

TV3D(x) subject to ‖y−Ax‖2 ≤ ε,

where the term TV3D(x) refers to the 3D total-variation of x. TV3D can be
defined as

TV3D(x) = ∑
i

√
(Dux(i))2 +(Dvx(i))2 +(Dtx(i))2,

where Dux and Dvx are the spatial gradients along horizontal and vertical
dimensions of x, respectively, and Dtx represents gradient along the tempo-
ral dimension of x. We present some of our experimental results in Figure 2,
where we used MFISTA [2] for the reconstruction of videos.

FPA-CS provides three advantages over conventional imaging. First,
our CS-inspired FPA-CS system provides an inexpensive alternative to achieve
SWIR imaging in high spatiotemporal resolution . Second, compared to tra-
ditional single-pixel-based compressive cameras, FPA-CS simultaneously
records data from 4096 parallel, compressive systems, thereby significantly
improves the measurement rate. As a consequence, the achieved spatio-
temporal resolution of our device is an order of magnitude better than the
SPC.
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