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Motivation It is known that the feature data are often located on some low-
dimensional manifold, leveraging the geometry of the manifold may bring
benefits. The locality-constrained linear coding (LLC) [3] characterizes the
geometry of feature space by a dictionary of visual words, which provides a
crude, piecewise constant approximation of the manifold [1]. However, the
geometric structure surrounding the words are not considered. We present
a novel encoding method called Locality-constrained Affine Subspace Cod-
ing (LASC). We explicitly model the geometric structure of the immediate
neighborhoods of the visual words by low-dimensional linear subspaces.
The dictionary of affine subspaces thus obtained provides a piecewise linear
approximation of the underlying manifold [1]. Figure 1 shows the flowchart
of the LASC method and comparison with LLC.

We first define an ensemble of low-dimensional subspaces attached to
some representative points:

Si =
{

µ i +Aixi, xi ∈Rp}, i = 1, . . . ,M (1)

where µ i indicates a representative point and Ai is an n× p matrix whose
columns form a basis of the linear subspace. Indeed, Si defines a local
coordinate system and all of these local coordinate systems put together
characterize the holistic structure of the manifold.

Method Our idea is to represent a feature y by its top-k most neigh-
boring affine subspaces, and meanwhile constraining the projection of y in
each subspace by the proximity measure (PM) of the feature to this sub-
space. Specifically, the objective function of LASC is formulated as

min
∀ xi

∑
Si∈N S

k (y)

{∥∥(y−µ i)−Aixi
∥∥2

2 +λd(y,Si)
∥∥xi
∥∥2

2

}
, (2)

where λ > 0 is a regularization parameter, N S
k (y) is the neighborhood of y

defined by the k closest subspaces, and d(y,Si) indicates the PM value of y
to Si. Three PMs are considered based on the reconstruction error (dr), the
assumption of spherical Gaussian (ds) and general Gaussian (dp).

We segment the feature space by the simple k-means algorithm. Assume
each cluster can be modeled by a low-dimensional linear subspace. For
cluster i, we employ the PCA to preserve the p most signficant directions ui, j
with corresponding variances σ2

i, j , j=1,. . . ,p. Let Ai = Ui =
[
ui,1, · · · ,ui,p

]
.

Clearly (2) decouples into independent Ridge regression problems in xi, and
the solution can be written as

xi = wi
yzi = wi

yUT
i (y−µ i), zi ∈Rp (3)

for Si ∈N S
k (y), and wi = (1+λd(y,Si))

−1. Thus far we can write out the

first-order LASC vector for the feature y as x =
[
xT

1 , . . . ,x
T
i , . . . ,x

T
M
]T .

We propose to leverage the second-order information based on Fisher
information metric (FIM) [2]. After some derivations, we obtain the second-
order LASC vector

x·2i = wi
yfλ i

=
wi

y√
2

[
z2

i,1

σ2
i
−1, . . . ,

z2
i,p

σ2
p
−1

]T

. (4)

The final LASC vector, containing both the first- and second-order in-
formation, has the following form:

x =


...

xi
x.2i
...

 ,
LASC vector if Si∈N S

k (y); otherwise xi=x.2i =0︷ ︸︸ ︷
xi = wi

y

zi,1
...

zi,p


︸ ︷︷ ︸

1st-order vector

,x.2i =
wi

y√
2


(

zi,1
σi,1

)2
−1

...(
zi,p
σi,p

)2
−1


︸ ︷︷ ︸

2nd-order vector

(5)
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Figure 1: The dictionary of LLC (a) is a set of visual words while that
of LASC (b) is an ensemble of low-dimensional linear subspaces attached
to some representative points (i.e. affine subspaces). For an input feature,
we find its top-k nearest subspaces and perform linear decomposition of the
feature in these subspaces weighted by the proximity measures. Beyond the
linear coding, we propose to leverage the second-order information.

Discussion Our method is similar to LTC [4] which aims at learning
a nonlinear function by introducing local tangent directions computed by
PCA. However, we intend to obtain highly distinct representation by encod-
ing on an ensemble of affine subspaces, as opposed to the encoding of LTC
on individual visual words. Moreover, we use the PRs to assign features
to their k most neighboring affine subspaces and weight the coding vector,
while LTC computes the weight computed using the LCC [5] coefficients by
solving the LASSO problem. Last, we present the second-order encoding in
each subspace based on FIM [2], which amounts to explore the geometry of
the Riemannian manifold from the statistic perspective.

The FV also exploits FIM and performs local coding with respect to
5∼10 Gaussians with significant posterior probabilities [2, Appendix 2].
The FV uses a global PCA basis for dimensionality reduction and model-
s the universal GMM also in that global system. In contrast, the LASC
leverages an ensemble of local coordinate systems of varying origins and
the corresponding local bases. The dimensionality reduction and coding are
both relative to the local bases, which distinguishes the LASC from most of
the existing coding methods.

Results Comparisons with state-of-the-arts are shown in Table 1. Note
that Super vector (SV) coding [6] is a special case of LTC.

Method VOC2007 Caltech256 (30 train) MIT Indoor SUN397 (50 train)
LLC [3] 57.6 41.2(-) - 32.4(-)
SV [6] 58.2 42.4(-) 56.2 36.6(-)
FV [2] 61.8 47.4(0.1) 61.3 43.3(0.2)
LASC 63.6 52.1(0.1) 63.4 45.3(0.4)

Table 1: Comparisons on image classification benchmarks
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