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Abstract

The locality-constrained linear coding (LLC) is a very
successful feature coding method in image classification. It
makes known the importance of locality constraint which
brings high efficiency and local smoothness of the codes.
However, in the LLC method the geometry of feature space
is described by an ensemble of representative points (visu-
al words) while discarding the geometric structure immedi-
ately surrounding them. Such a dictionary only provides a
crude, piecewise constant approximation of the data mani-
fold. To approach this problem, we propose a novel feature
coding method called locality-constrained affine subspace
coding (LASC). The data manifold in LASC is characterized
by an ensemble of subspaces attached to the representative
points (or affine subspaces), which can provide a piecewise
linear approximation of the manifold. Given an input de-
scriptor, we find its top-k neighboring subspaces, in which
the descriptor is linearly decomposed and weighted to form
the first-order LASC vector. Inspired by the success of usage
of higher-order information in image classification, we pro-
pose the second-order LASC vector based on the Fisher in-
formation metric for further performance improvement. We
make experiments on challenging benchmarks and experi-
ments have shown the LASC method is very competitive.

1. Introduction
Encoding methods as one key component of Bag of Vi-

sual Words (BoVW) model [34] have made great progress
in the past years. Such coding methods achieve impres-
sive results in many computer vision tasks, such as ob-
ject recognition, image retrieval, and texture classification.
From the hard-assignment approaches [34, 6, 22] to the soft-
assignment ones [42, 36, 24], and then to those based on lo-
cal constraints [45, 38] and the methods using higher order
information [18, 47, 44, 31], the advance of encoding meth-
ods has been playing a great role in improving the classifica-
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tion performance [16]. This is mainly due to consideration
of the algebraic and geometric structure of data manifold
and utilization of high-order information.

The sparsity of coding vector is an inherent property in
the BoVW model. The hard-assignment methods [34, 6, 22]
allocate each feature to the nearest word in the dictionary,
producing extremely sparse vector which has only one non-
zero component. The sparse coding (SC) method [42] rep-
resenting each feature as a sparse, linear combination of vi-
sual words, having smaller reconstruction error and achiev-
ing better performance than the hard-assignment method-
s. However, the SC method is computationally demanding;
moreover, the non-smooth `1 regularizer introduces the neg-
ative effect [38] that quite different words may be selected
for similar patches to favor sparsity, leading to loss of cor-
relation between the corresponding coding vectors.

Recent research has observed and validated that locality
is more essential than sparsity [38, 45, 24]. The locality-
constrained linear coding (LLC) [38] is a great advance
in this aspect, achieving state-of-the-art recognition perfor-
mance. The LLC method imposes the weighted `2 reg-
ularizer in the least square-based cost function where the
weights are proximity measures of the feature to individual
words. The LLC method yields the local smooth sparsity
which ensures similar patches have similar encoding vec-
tors. In addition, it has closed-form solution such that it is
faster than the SC methods. A most often used form of LLC
is to explicitly represent the feature as a linear combination
of the most nearby visual words, and by doing so the LLC
method becomes much more efficient.

In the BoVW methods we usually face high-dimensional
feature space (e.g. the dimension of SIFT features is 128
[25]). It is known that the feature data are often located on
some low-dimensional manifold and leveraging the geom-
etry of the manifold may bring benefits [30]. As shown in
Figure 1 (a), the LLC method characterizes the geometry of
feature space by some representative points (visual words),
obtained by either k-means or dictionary learning methods
[42, 38]. The dictionary thus obtained only provides crude,
piecewise constant approximation of the manifold [3]. Be-
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Figure 1. Locality-constrained affine subspace coding (LASC). The dictionary of LLC (a) is a set of representative points (visual words); the
geometric structure immediately surrounding the words are discarded, and so it only provides a crude, piecewise constant approximation of
the manifold [3]. In contrast, the dictionary of LASC (b) is an ensemble of low-dimensional linear subspaces attached to the representative
points (affine subspaces), which provides a piecewise linear approximation of the data manifold [3]. For an input feature, we find its top-k
nearest subspaces and perform linear decomposition of the feature in these subspaces weighted by the proximity measures. Beyond the
linear coding, we propose to leverage the second-order information of the descriptors based on the Fisher information metric.

cause the LLC method discards the geometric structure im-
mediately surrounding each representative point, it has lim-
ited capability to characterize the feature distribution on the
data manifold. Can this problem be addressed by increas-
ing the number M of visual words? Recent work [16] has
shown that by increasing M the classification performance
can improve but may saturate to the upper bound 1. This
demonstrates that the increase of M alleviates but cannot
address this problem. This phenomenon is not surprising
because (1) all feasible training samples are sparsely popu-
lated in high dimensions due to the curse of dimensionality
[15, Chap. 2], and it is difficult, if not impossible, to obtain
sufficiently large size of training samples because of restric-
tion of memory and computing capability, and (2) even one
can approximate the feature space with much more visual
words, the geometric structure surrounding these words are
still not considered.

We approach this problem by presenting a novel en-
coding method called Locality-constrained Affine Subspace
Coding (LASC). Figure 1 shows the flowchart of the LASC
method and comparison with LLC. We explicitly model the
geometric structure of the immediate neighborhoods of the
representative points by low-dimensional linear subspaces
[30, 19], which indeed provides a piecewise linear approx-
imation of the manifold underlying data [3]. Hence, the
dictionary of LASC is an ensemble of low-dimensional lin-

1It has been observed [16] that the classification performance of LLC
saturated on PASCAL VOC 2007 around M = 32, 768.

ear subspaces attached to the representative points, or affine
subspaces. Our idea is to perform descriptor encoding on-
ly in few most neighboring subspaces. The neighbor in-
dicates some metric and we introduce the proximity mea-
sures between points and subspaces from the perspectives
of statistical learning and reconstruction error. Specifically,
for a given descriptor, we find its top-k nearest affine sub-
spaces and perform linear decomposition in these subspaces
weighted by the proximity measure. This way, we produce
the first-order (linear) LASC vector of the descriptor. Mo-
tivated by the success of higher-order encoding method, we
propose the second-order LASC vector based on the Fisher
information metric to further improve the performance of
the proposed LASC method.

The rest of this paper is organized as follows. We in-
troduce in § 2 the related work. We then describe in detail
the proposed LASC method in § 3. The experiments are
presented in § 4. Finally, § 5 gives the concluding remark.

2. Related Work
The local coordinate coding (LCC) [45] learned a non-

linear function in high dimensional feature space by con-
sidering the geometric structure of the data. Recent work
[43] described a mixture sparse coding model which can
be regarded as an approximate model of LCC. The local
tangent coding (LTC) [44] extended LCC by introducing
local tangent directions computed by the principal compo-
nent analysis (PCA). Super vector (SV) coding [47] is a spe-



cial case of LTC, which, inheriting the main characteristics
of LTC but running much faster, has been widely used in
image classification [5, 16]. The proposed method is sim-
ilar to LTC, but has several significant differences. First,
the LASC method is intended to perform encoding on an
ensemble of affine subspaces as opposed to the encoding
of LTC on individual visual words. Compared to the ac-
curate approximation to the nonlinear function in the LTC
method, the LASC method focuses on highly distinct rep-
resentation. Moreover, we find k most neighboring affine
subspaces using the proximity measures between features
and affine subspaces to weight the coding vector. It is ba-
sically different from LTC which computes the LCC coeffi-
cients of the feature on the visual words to weight the code
by solving the LASSO problem [15]. In contrast with LTC,
the LASC throughout has closed-form and is much more ef-
ficient. Last but not the least, we present the second-order
encoding in each subspace based on the Fisher Information
metric [31], which amounts to explore the geometry of the
Riemannian manifold from the statistic perspective [17]. It
has been shown that leveraging higher-order statistics of
features benefits greatly the classification tasks, and such
kind of works include the second-order pooling method [4],
VLAD-based method using higher-order statistics [28] and
those based on the fisher vector (FV) [31, 21, 27].

Nandakishore et al. [19] propose to find the nearest sub-
space in a set of ones for dimensionality reduction. The
difference is that instead of dimensionality reduction in
[19], we are interested in higher dimensional representa-
tion which has great distinctiveness. We notice some re-
cent work [39, 33] on applications of affine subspace to vi-
sion problems. Wang et al. [39] propose an affine subspace
based descriptor which can handle image transformation,
including scaling, rotation and translation. Shirazi et al.
[33], focusing on object tracking, model the object appear-
ance variation by a set of affine subspaces and propose a
measure based on Grassmann geodesic distance to compare
the difference between two affine subspaces.

Building upon the assumption that data are drawn from
a union of linear (or affine) subspaces, the subspace seg-
mentation or clustering methods study how to estimate the
number, dimensions, and basis of the subspaces. The sta-
tistical methods [35, 13] suppose that the random vector in
each cluster follows Gaussian distribution and exploit the
Expectation Maximization (EM) algorithm for subspace es-
timation. Some recent works present subspace segmenta-
tion approaches based on the sparse coding [7, 10] or low-
rank representation [23]. A comprehensive review of the
subspace segmentation methods are beyond our scope and
the reader may refer to [8]. Note that our paper focus on a
new feature encoding method with locality constraint given
an ensemble of affine subspaces. We demonstrate the ef-
fectiveness of our idea with simple subspace segmentation

method. By using state-of-the-art methods [46, 26, 11], the
performance of LASC may be further improved. Howev-
er, application of these methods to our problem may not be
straightforward, as we often face a large number of high
dimensional training data.

3. Locality-Constrained Linear Subspace Cod-
ing (LASC)

In this section, we first recall briefly the LLC method
which is the starting point of our work (§ 3.1); after formu-
lating the objective function of LASC (§ 3.2), we present the
proximity measures (§ 3.3) and how to leverage the second-
order information (§ 3.4).

3.1. LLC in Retrospect

Let B = [µ1, . . . ,µM ] be the dictionary consisting of
M visual words µi ∈ Rn, i = 1, . . . ,M , and y be an in-
put feature to be encoded. The LLC is formulated as the
following optimization problem:

argmin
c

∥∥y −Bc
∥∥2
2
+ λ

∑
i
d(y,bi)c

2
i (1)

s.t.
∑

i
ci = 1.

Here λ > 0 is the regularization parameter, ci is the ith

component of c, and d(y,bi) = exp(β‖y − bi‖22), β > 0,
where ‖ · ‖2 indicates the Euclidean distance. By using the
`2 regularization, LLC produces the sparse code which is
locally smooth, a property that SC do not have. It is not dif-
ficult to see that there is a (unique) closed form solution to
the problem (1). This enables LLC to be more efficient than
SC which involves computationally demanding iterations.

The approximated version of LLC is to select directly the
k-nearest words and represent y by a linear decomposition
of them

argmin
cN

∥∥y −BN cN
∥∥2
2
, s.t.

∑
i
cNi = 1, (2)

where BN is the dictionary consisting of only k-nearest vi-
sual words to the input feature y. This reduces consider-
ably the computations as one only needs to solve a much
smaller (k � M ) system of linear equations. Note that
throughout the paper [47] the approximated version of LLC
(2) is adopted. As observed in [24], when employing the
distances to all words the soft-assignment methods deteri-
orate, and they attributed this to that distances between the
feature and remote words are not unreliable any more due
to the underlying geometric structure of the manifold.

3.2. Formulation of LASC

Now we extend the idea of locality constraint from dic-
tionary of visual words to dictionary of affine subspaces. In
our method, the geometry of feature space is represented by



an ensemble of low-dimensional subspaces attached to the
representative points or affine subspaces:

Si =
{
µi + Aixi, xi ∈ Rp

}
, i = 1, . . . ,M (3)

where µi indicates the representative point and Ai is an n×
pmatrix whose columns form a basis of the linear subspace.
Indeed, Si defines a local coordinate system and all of them
gives a holistic picture of the manifold.

Our idea is to represent a feature y by its top-k most
neighboring affine subspaces, and in the meantime con-
straining the projection of y in each subspace by the prox-
imity measure of the feature to this subspace. Specifically,
the objective function of LASC is formulated as

min
∀ xi

∑
Si∈NS

k (y)

{∥∥(y − µi)−Aixi
∥∥2
2
+ λd(y,Si)

∥∥xi∥∥22} ,
(4)

where λ > 0 is a regularization parameter, N S
k (y) is the

neighborhood of y defined by the k closest subspaces, and
d(y,Si) indicates the value of proximity measure of y to
subspace Si. Here the proximity implies a measure which is
to be discussed in § 3.3. It is clear that the objective function
(4) decouples into independent Ridge regression problems
in xi. The solution to (4) has closed form:

xi =
(
AT
i Ai + λd(y,Si)I

)−1
AT
i (y − µi) (5)

for Si ∈ NS
k (y); and xi is equal to zero otherwise, where I

is the identity matrix of order p.
We segment the feature space by the k-means algorith-

m to obtain clusters Ci, i = 1, . . . ,M . Let µi and Σi, i =
1, . . . ,M be the mean vector and covariance matrix of clus-
ter Ci. We assume, in the local coordinate system with
the cluster center as origins, each cluster has a geometrical
structure of low-dimensional linear subspace. We employ
PCA to preserve the directions with larger variances. Let
us denote by σ2

i,1, . . . , σ
2
i,n the positive eigenvalues of Σi in

non-decreasing order. Let ui,j be the orthogonal eigenvec-
tor corresponding to σ2

i,j . We employ the most significant
principal directions ui,j , j = 1, . . . , p to form our PCA ba-
sis, i.e.,

Ai = Ui =
[
ui,1, · · · ,ui,p

]
(6)

In this case, the solution (5) has a simple form as follows:

xi = wiyUT
i (y − µi) (7)

for Si ∈ NS
k (y), and wiy = (1 + λd(y,Si))−1. It can

be seen that xi is the orthogonal projection of y − µi in
the subspace Si, weighted by the proximity measure-based
weight wiy. Thus far we can write out the first-order LASC
vector for the feature y

x =
[
xT1 , . . . ,x

T
i , . . . ,x

T
M

]T
(8)

where xi is computed by Eq. (7) if the subspace Si lies
within N S

k (y), and otherwise xi is equal to zero vector.

3.3. Proximity Measure of Points to Affine Sub-
spaces

In the LASC method we need to evaluate the degree of
proximity measure of features to affine subspaces. In the
following, we consider three kinds of proximity measures.

We first consider the proximity measure dr(y,Si) from
the traditional perspective of the reconstruction error. The
minimum reconstruction error ε(y,Si) of y in the affine
subspace Si is

ε(y,Si) = min
xi

∥∥(y − µi)−Aixi
∥∥2
2

(9)

=
∥∥(I−UiU

T
i )(y − µi)

∥∥2
2
,

where T indicates the matrix transpose. Hence, we can nat-
urally define

dr(y,Si) = exp(βε2(y,Si)). (10)

The parameter β is obtained by the cross-validation method
[15].

Next, we introduce the proximity measure from the s-
tatistical perspective. Let us consider a simple but more
general case. We assume that the probability distribution
p(y|Ci) of all clusters Ci, i = 1, . . . ,M are isotropic Gaus-
sians, whose mean vectors are their respective cluster cen-
ters and whose covariance matrices are σ2I. We further
assume that the prior probability p(Si), i = 1, . . . ,M are
uniform, then in terms of the Bayes’ rule, we have

ds(y,Si) =
exp(− 1

2σ2 ‖y − µi‖22)∑M
i′=1 exp(−

1
2σ2 ‖y − µi′‖22)

. (11)

In this case, the proximity measure of one point to the affine
subspace reduces to the Euclidean space between this point
to the cluster center µi. The underlying assumption is that
we approximate the feature distribution by an ensemble of
spheres of the same radius. This method has very loose as-
sumption which may be scalable to unknown data. We also
use the cross validation technique to determine the value of
σ. Note that this kind of statistical modeling method has
been used in image classification [36, 24].

Finally, we derive the proximity measure from training
data, also from the statistical perspective. As y is in the
low-dimensional subspace and the random vector

zi = UT
i (y − µi), (12)

is the orthogonal projection of y in the affine space Si. We
denote by zi,j = uTi,j(y − µi) the jth component of zi.
From PCA we know that the expectation and covariance
matrix of zi are

E(zi) = 0, cov(zi) = diag(σi,1, . . . , σi,p), (13)



respectively, where diag(σi,1, . . . , σi,p) is the diagonal ma-
trix. Different components zi,j in the random vector zi are
not correlated. Here, we assume that zi follows Gaussian
distribution with mean vector E(zi) and covariance matrix
cov(zi), i.e.,

p(zi|Si) =
p∏
j=1

1√
2πσi,j

exp(−
z2i,j
2σ2

i,j

). (14)

We define

dp(y,Si) = p(Si|zi) (15)

=

∏p
j=1

1
σi,j

exp(− z2i,j
2σ2

i,j
)∑M

i=1

∏p
j=1

1
σi,j

exp(− z2i,j
2σ2

i,j
)
.

We derive (15) again based on the Bayes’ rule and assume
the prior probability p(Si), i = 1, . . . ,M be uniform. Note
that in this case the cov(y) = E{(y−µ)(y−µ)T } has rank
p < n, which follows the so-called degenerate Gaussian
distribution [32].

3.4. Combination of the Second-Order Information

The second-order information has proven helpful for in-
creasing classification accuracy [31, 4]. Due to success of
the Fisher vector method [31], in the following we propose
our second-order LASC based in Fisher information metric
as well. It is known [17] that the space of exponential family
of distributions, e.g., Gaussian distribution, forms a statisti-
cal manifold on which the Riemannian metric is defined by
the Fisher information metric. The Fisher vector is the gra-
dient of the likelihood function with respect the parameters
of the distributions normalized by the Fisher information
matrix. Indeed, it is the gradient on the tangent space of the
statistical manifold (called natural gradient) [1].

Let us consider the Fisher vector associated with the
random vector zi which has probability density function
(PDF) described by (14). For notational clarity, below
we use p(zi|λi) to denote the PDF of zi, where λi =
[σi,1 . . . σi,p]

T is the parameter vector. Let gλi
=

Oλi
log(p(zi)) be the gradient vector of the likelihood func-

tion log(p(zi)). We can derive the Fisher information ma-
trix Fλi

= Ep(zi|λi)(gλi
gTλ ) = diag(σ−2i,1 . . . σ−2i,p ),

where Ep(zi|λi)(·) indicates the expectation with respec-
tive to p(zi|λi). The Fisher vector is computed by fλi =

F
−1/2
λi

gλi
, where F

−1/2
λi

is the inverse of the square root
matrix of Fλi

. After some derivation, we can obtain
the Fisher vector and accordingly, define our second-order
LASC vector as

x·2i = wiyfλi =
wiy√
2

[
z2i,1
σ2
i

− 1, . . . ,
z2i,p
σ2
p

− 1

]T
. (16)

The final LASC vector, containing both the first-order
and second-order information, is written as

x =


...

xi
x.2i

...

 ,
LASC vector if Si∈NS

k (y); otherwise xi=x.2
i =0︷ ︸︸ ︷

xi = wiy

zi,1...
zi,p


︸ ︷︷ ︸

1st-order vector

,x.2i =
wiy√
2


(
zi,1
σi,1

)2
− 1

...(
zi,p
σi,p

)2
− 1


︸ ︷︷ ︸

2nd-order vector
(17)

4. Experiments
In this section, we make experiments on four benchmark

datasets to test the performance of the proposed LASC.
First, we introduce the experimental setting and the bench-
marks. We then assess the important components in LASC
on the challenging PASCAL VOC 2007, which include the
number of subspaces, subspace dimension, proximity mea-
sures, and utilization of the second-order information. Fi-
nally, we compare with the state-of-the-art methods.

4.1. Experimental Setting

In all our experiments, we extract five scale dense SIFT
features with stride of four pixels. We learn dictionaries
of affine subspaces by using the k-means algorithm with
over five million features. Three level spatial pyramid [22]
(1×1, 3×1 and 2×2) are used in the proposed LASC. For
the image-level LASC vector, we normalize the first-order
and second-order sub-vectors separately per subspace by l2
norm, and then l2-normalize the aggregated vector on each
sub-image in the pyramid. The SVM classifiers are learned
in a one-vs-all fashion to deal with multi-class classification
problem. All the programs are written in Matlab release
2013a running on a PC with Intel(R) Core(TM) i7-4820K
CPU @ 3.40GHz and 64G RAM. We implement extraction
of SIFT and SVM classifier with VLFeat [37].

4.1.1 Benchmark datasets

We employ four challenging benchmark datasets for per-
formance evaluation, where two datasets are for the object
class recognition and the other two for scene categorization.

PASCAL VOC 2007 [9] is a very challenging bench-
mark which contains 9,963 images from 20 object cate-
gories with large within-class variations. We follow the s-
tandard evaluation protocol [9] and report the mean average
precision (mAP).

Caltech 256 [12] is composed of 30,607 images in 256
object categories and one background class. It contains
large variations of the object size and pose. Following the
custom setup, we test the LASC algorithm by randomly se-
lecting 15, 30, 45, and 60 training images per class and all



the rest for testing, background class is not evaluated. The
experiments are repeated five times and the average accura-
cy and standard deviation are reported.

MIT Indoor 67 [29] is a difficult indoor scene dataset
due to the large variability of within-class and large confu-
sion between-class. It contains 67 categories, each of which
has at least 100 images and 15,620 images in total. We use
a subset of the dataset together with fixed training/test splits
as in [29] and report the mean accuracy.

SUN 397 [40] is a large database for scene categoriza-
tion. It contains more than 100K well-sampled images from
397 indoor and outdoor scene categories. Each category has
100 images at least. Following the experimental setting in
[40], we use ten chosen subsets for evaluation. In each sub-
set, 5, 10, 20 or 50 samples per class are used for training
and 50 samples per class for testing. The average accuracy
of ten subsets is reported.

4.2. Analysis of LASC

In this subsection, we are to conduct a sequence of exper-
iments on the VOC 2007 [9] to analyze the influence of the
important parameters on the LASC. The parameter β in the
proximity measure dr (10) and σ in the proximity measure
ds (11) are set to 1500 and 0.1, respectively, by the cross-
validation method. The regularization parameter λ = 1 in
Eq.(4) throughout the paper. The parameters in the proxim-
ity measure dp (15) are determined from training samples
as described in Section 3.

4.2.1 Number of nearest subspaces

In the LASC method, we need first to decide the number
k of nearest subspaces. Here we evaluate how k affects
the performance of the first-order LASC. The number M
of subspaces is set to 256 and dimension p of each subspace
is set to 64. We choose ds to produce only the first-order
LASC vectors as ds is simple yet more general in the sense
that it does not involve the subspace structure. Figure 2
shows the curve of the mAP of LASC vs. number of near-
est subspaces. It can be seen that the mAP reaches peak at
k = 3 and then smoothly decreases as k gets larger. We
mention that dr and dp also achieve the best results when
k = 3, but when k > 3, their performances decrease less
dramatically than that of ds. We set k = 3 in the remaining
experiments.

4.2.2 Subspace dimension

The LASC method assumes that the data manifold can be
effectively represented by an ensemble of subspaces at-
tached to the representative points. Below we are to vali-
date this assumption, and study the influence of subspace
dimension. For this purpose, we set M = 256, and use the
proximity measure ds to produce only the first-order LASC
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Figure 2. Influence of number of nearest subspaces on the LASC
method on VOC 2007.
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Figure 3. Influence of subspace dimensions on the LASC method
on VOC 2007.

vectors. We plot the curve of mAP vs. subspace dimension
p (the number of principal components in our case) in Fig-
ure 3. The classification performance of LASC increases
rapidly with dimension until p = 64. Increasing dimension
from 64 to 128 achieves no more than 0.26% mAP growth.
It can be seen that too small dimensions are insufficient to
describe the structure of the subspace, while much larger
ones give little benefit. The behaviors of dr and dp are very
similar to that of ds. The results confirm our hypothesis that
the feature data lie in certain low-dimensional subspaces.
We set p = 64 in all the subsequent experiments to counter-
balance the efficiency and performance.

4.2.3 Proximity measures and comparison with LLC

The proximity measures between descriptors and affine sub-
spaces play a crucial role in proposed LASC method. We
hereby evaluate the proximity measures dr (10), ds (11) and
dp (15). We also only use the first-order LASC vector. The
mAPs of the three methods vs. dictionary sizeM are shown
in Figure 4. We can see that LASC (ds) and LASC (dp) out-
perform LASC (dr) by a large margin while LASC (dp) is
coherently better than LASC (ds). Interestingly, the mar-
gin between LASC (ds) and LASC (dp) gradually gets s-
maller with increasing dictionary size until is negligible at
M = 512. This is a desirable property as described in Sec-
tion 3.3, in the case of ds we can use Euclidean distance
to find the k-nearest subspaces which makes the proposed
method very efficient. For all the following experiments,



we select the proximity measure dp.
To analyze why various proximity measures perform d-

ifferently, we randomly select 50 features from the set of
training features, and compute the values of proximity mea-
sures of these features to all the affine subspaces. The re-
sults are displayed in Figure 5. The values of dp (top) ap-
pear very sparse in the sense that for a feature few proximity
measure values are significant while others being negligi-
ble, which indicates that the nearest subspaces can be found
accurately. In sharp contrast, the values of dr (middle) are
densely populated, indicating that the nearest subspaces can
not be determined reliably. The case of ds (bottom) is inter-
mediate between those of dp and dr.

Currently LASC (dp) is computationally demanding due
to calculation of posterior probability of features (CPPF),
which is implemented in Matlab language without any op-
timization. We can implement CPPF in C language and op-
timize the codes to improve its efficiency, as done in [37].
LASC (dr) takes comparable time with LASC (ds) while
LASC (dp) is very efficient as only Euclidean distances are
involved.

Comparison with LLC. We also compare the first-order
LASC method with LLC [38]. To make the comparison
as fair as possible, for LASC with M subspaces of d-
dimension, we use the dictionary of Md visual words for
LLC such that both have coding vector of same size. As
shown in Figure 4, LASC (ds) and LASC (dp) have clear
advantages over LLC, particularly as the dictionary size get-
s larger. We owe the higher performance of LASC to the
usage of encoding on affine subspaces. LLC provides on-
ly piecewise constant approximation of the data manifold
and enlarging the number of words in the dictionary helps
but fails to address the problem. In contrast, the first-order
LASC has better representation capability by providing the
piecewise linear approximation of the manifold.

4.2.4 Combination of second-order information

The purpose of experiments in this section is to evaluate
the performance of LASC by using separately the first- and
second-order information as well as by combining them.
Figure 6 presents the mAP of the respective methods vs.
dictionary size. The second-order LASC has similar perfor-
mance with the first-order one with smaller dictionary size
(M < 32), but the latter one outperforms by increasing-
ly large margins. By combining the first- and second-order
information, LASC (1st+2nd) achieves significant perfor-
mance boost.

The FV [31] method also leverages the first- and second-
order information and we compare it with the proposed
LASC. Note that the LASC method using only the first-
order information are better than FV when M > 256.
The LASC (1st+2nd) coherently outperforms FV by aver-

age 1.5% mAP (M ≥ 64) and the highest gains is 2.0%
(M = 512).
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Figure 4. Comparison of LASC (first-order) by using differen-
t proximity measures and comparison with LLC on VOC 2007.
The numbers in the brackets on the horizontal axis indicate the
dictionary size of LLC.
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Figure 5. Proximity measures dp (top), dr (middle) and ds (bot-
tom) of features (vertical axis) to all affine subspaces (horizontal
axis) in the dictionary of LASC.
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Figure 6. Comparison of the LASC methods by using the first-
order or/and second-order information on VOC 2007. The results
of FV are also shown for comparison.

4.3. Comparison with state-of-the-art methods

PASCAL VOC 2007 [9]. In Section 4.2.4, we have com-
pared the performance of FV and LASC against varying
dictionary size. Table 1 summarizes comparison results
with other methods besides FV. The result (63.6%) of LASC
achieved with 512 subspaces outperforms LLC by a large
margin (6%), and is much better than SV [47] as well as



the PASCAL VOC 2007 winner [9]. Our result is also com-
parable with the state-of-the-art results, i.e., 63.5% in [14]
and 63.8% in [21]. Note that Harzallah et al. [14] combined
the localization (detection) and classification modules and
Kobayashi [21] introduced an improved FV method by us-
ing Dirichlet-based GMM.

Caltech 256 [12]. We compare LASC with six state-of-
the-art methods [42, 38, 47, 31, 2, 21], and the results are
summarized in Table 2. On this benchmark, the proposed
LASC method outperforms all these six methods by using
any number of training samples. Particularly, as regards the
average classification accuracy over four kinds of training
samples, the LASC method (1) outperforms FV by about
5.1%; (2) achieves approximately 2.4% higher classifica-
tion accuracy than Kobayashi [21] which concerns an im-
proved FV method; and (3) has an advantage of 1.7% high-
er accuracy over Bo et al. [2], which trained a three layer
deep architecture for learning image representation.

MIT Indoor 67 [29]. Table 3 presents the comparison
results of LASC and the competing methods. The pro-
posed LASC achieves 1.6% higher accuracy than FV, and
has much better performance than other methods excep-
t [41], which achieves the highest classification accuracy,
slightly higher than ours by 0.1%. Their method is specially
designed for indoor scene recognition by combining spatial
pyramid matching (SPM) and orientational pyramid match-
ing (OPM) based on Fisher vector [31].

SUN 397 [40]. We present in Table 4 the comparison re-
sults of LASC with other methods, where the results of LLC
and SV are reproduced from [16]. The LASC evidently has
much higher classification accuracy than Xiao et al. [40],
LLC (4k) [38] and SV [47]. It also coherently outperforms
the FV method [31], and the performance gap gets larger as
the number of training samples increases (the largest gap is
2.0% with 50 training samples). Note that Kobayashi [21]
reported 46.1% accuracy with 50 training samples, which is
slightly higher than ours.

Similar to LASC, the FV method also exploits Fisher in-
formation metric and performs local coding, i.e., coding of
one feature with respect to 5∼10 Gaussians with signifi-
cant posterior probabilities [31, Appendix 2]. Despite these
similarities, FV and LASC have big differences. The FV
method uses a global orthogonal basis obtained by PCA for
dimensionality reduction plus (also in that global system)
training of a universal GMM for modeling feature statistic-
s. In a sharp contrast, the LASC method leverages an en-
semble of local coordinate systems of varying origins and
the corresponding local bases; the dimensionality reduction
and the coding are both relative to the local bases. In our
opinion, the ensemble of local bases can better represent
the geometry of data manifold, which distinguishes the pro-
posed LASC from most of the existing coding methods, and
may account for its superior performance.

Method mAP (%)
LLC (25k) [5] 57.6
SV (1k) [5] 58.2
The winners [9] 59.4
FV (256) [31] 61.8
Harzallah et al. [14] 63.5
Kobayashi [21] 63.8
LASC (256) 63.2
LASC (512) 63.6

Table 1. Comparison on Pascal VOC 2007.

# samples 15 30 45 60
SC (1k) [42] 27.7 (0.5) 34.0 (0.4) 37.5 (0.6) 40.1 (0.9)
LLC (4k) [38] 34.4 (-) 41.2 (-) 45.3 (-) 47.7 (-)
SV (256) [16] 36.1 (-) 42.4 (-) 46.3 (-) 48.8 (-)
FV (256) [31] 38.5 (0.2) 47.4 (0.1) 52.1 (0.4) 54.8 (0.4)
Kobayashi [21] 41.8 (0.2) 49.8 (0.1) 54.4 (0.3) 57.4 (0.4)
Bo et al. [2] 42.7 (-) 50.7 (-) 54.8 (-) 58.0 (-)
LASC (256) 43.7 (0.4) 52.1 (0.1) 57.2 (0.3) 60.1 (0.3)

Table 2. Comparison on Caltech 256.

Method Acc. (%)
Quattoni et al. [29] 26.0
SV (1k) [20] 56.2
FV (256) [31] 61.3
Bo et al. [2] 51.2
Kobayashi [21] 63.4
Xie et al. [41] 63.5
LASC (256) 62.9
LASC (512) 63.4

Table 3. Comparison on MIT Indoor 67.

# samples 5 10 20 50
Xiao et al. [40] 14.5 20.9 28.1 38.0
LLC (4k) [16] 13.5 18.7 24.5 32.4
SV (128) [16] 16.4 21.9 28.4 36.6
FV (256) [31] 19.2 (0.4) 26.6 (0.4) 34.2 (0.3) 43.3 (0.2)
LASC (256) 19.4 (0.4) 27.3 (0.3) 35.6 (0.1) 45.3 (0.4)

Table 4. Comparison on SUN 397.

5. Conclusion

This paper presented a novel method called LASC for
feature encoding, which extended the locality-constrained
linear coding (LLC) from an ensemble of visual words to
a dictionary of affine subspaces. In the LASC method, the
manifold of high dimensional features is described by local
subspaces attached to the representative points. This funda-
mentally differs from LLC which describes the data man-
ifold only by the representative points (i.e., visual word-
s), while ignoring the geometric structure immediately sur-
rounding them. We also propose to exploit the second-order
information in each subspace based on the Fisher informa-
tion metric. In the future, it is interesting to integrate into
LASC the histogram feature transform method [21] which
has greatly improved FV. Advanced methods for subspace
segmentation rather than the simple k-means clustering may
further benefit the LASC method.
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