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Distance metric plays an important role in many computer vision and pattern
recognition tasks. Metric learning aims to learn a specific distance function
for a particular task, and is proven to be very useful when dealing with prob-
lems that rely on distances. In the Mahalanobis metric learning framework,
the central task is to learn a positive semidefinite matrix M to fit the squared
Mahalanobis distance d2(x,y) = (x−y)T M(x−y). Basically, Mahalanobis
metric can be viewed as Euclidean metric on a global linear transformed
input space. How to estimate such linear transformations on the input space
is at core of Mahalanobis metric learning, which aims to obtain a distance
metric better modeling the underlying relationship among input data [2, 3].
While except for learning a positive semidefinite matrix for Mahalanobis
metric, few attempts have been made for a proper non-Euclidean metric.

In this paper, we present a non-Euclidean metric beyond Mahalanobis
framework. The core idea lies in a novel distance metric defined based on
the non-Euclidean geometry discovered by A. Cayley and F. Klein in the
19th century. The so called Cayley-Klein metric, induced by an invertible
symmetric matrix, is a metric in projective space defined using a cross-ratio.
Compared to existing metrics, Cayley-Klein metric has several advantages.
First, the Cayley-Klein space is a special case of Riemannian space with
fixed curvature. Second, the Cayley-Klein metric has an explicit definition
while a general Riemannian metric does not have. Finally, it is a generaliza-
tion of Mahalanobis metric by extending the metric definition based on a lin-
ear transformation to a fractional transformation. As a result, Cayley-Klein
metric is more general compared to Euclidean and Mahalanobis metrics.

Given an invertible symmetric matrix Ψ∈R(n+1)×(n+1), its bilinear rep-
resentation of x,y ∈ Rn can be denoted by ψ(x,y):
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If matrix Ψ is positive definite, then ψxx > 0, we can define ρE(x,y) : Rn×
Rn→ R+ as:
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If matrix Ψ is indefinite, set Bn = {x∈Rn|ψxx < 0}, we can define ρH(x,y) :
Bn×Bn→ R+ as:
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(Rn,ρE) is called elliptic geometry space and (Bn,ρH) is called hyperbolic
geometry space. ρE and ρH together constitute the Cayley-Klein metric.

Based on the Cayley-Klein metric, we propose a special form of it which
we call generalized Mahalanobis metric since it approaches Mahalanobis
metric in an extreme case. Firstly, we define two reversible symmetric ma-
trices G± as:

G± =

(
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)
(k > 0) (4)

where m and Σ are mean and inverse covariance of a set of data points. G+

is positive definite while G− is indefinite. Then, according to Eq. (1)(2)(3),
we can obtain two specific Cayley-Klein metrics dE(xi,x j) and dH(xi,x j).

Figure 1 illustrates the difference between Cayley-Klein metric and Ma-
halanobis metric in 2-dimensional space. Under Mahalanobis metric, the
equidistant distribution of a fixed point is an ellipse and stays unchanged
when the fixed point changes its location. On the contrary, in case of Cayley-
Klein metric, the shape and scale of this equidistant distribution would change,
depending on the location of the fixed point.
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Figure 1: Equidistant distribution of five fixed points for Cayley-Klein met-
ric and Mahalanobis metric. Under Mahalanobis metric (marked as “o” in
blue), all points with unit distance to a fixed point (marked as “x” in black)
form an ellipse, whose center is the fixed point. This ellipse is identical for
any fixed point, wherever its location. On the contrary, under Cayley-Klein
metric (marked as “+” in red), all points with unit distance to the origin form
a shape similar to ellipse. However, this shape differs when the fixed point
moves.

Method OSR PubFig
MMC [3] 64.0 ± 1.6 80.3 ± 1.0
CK-MMC 67.1 ± 1.6 82.5 ± 1.0
LMNN [2] 67.3 ± 1.3 78.8 ± 1.4
GB-LMNN [1] 69.3 ± 1.3 79.9 ± 1.6
CK-LMNN 70.1 ± 1.1 81.3 ± 1.7

Table 1: Classification accuracies (mean and standard deviation in %) ob-
tained on OSR and PubFig. CK-MMC and CK-LMNN have a clear im-
provement over MMC and LMNN respectively.

In metric learning, two of the most typical methods are MMC [3] and
LMNN [2]. In the paper, we integrate Cayley-Klein metric into these typi-
cal supervised metric learning paradigms to obtain two Cayley-Klein metric
learning methods, which we called CK-MMC and CK-LMNN.

Implementation of these two methods are described in the paper, with
details on optimization objectives and solvers. Our conclusion is that the
proposed two Cayley-Klein metric learning methods can use labeled train-
ing data to learn an appropriate metric for a given task. Experiments on
image classification have shown that better performance can be obtained by
using Cayley-Klein metric.
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