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Abstract

Cayley-Klein metric is a kind of non-Euclidean metric
suitable for projective space. In this paper, we introduce
it into the computer vision community as a powerful met-
ric and an alternative to the widely studied Mahalanobis
metric. We show that besides its good characteristic in non-
Euclidean space, it is a generalization of Mahalanobis met-
ric in some specific cases. Furthermore, as many Maha-
lanobis metric learning, we give two kinds of Cayley-Klein
metric learning methods: MMC Cayley-Klein metric learn-
ing and LMNN Cayley-Klein metric learning. Experiments
have shown the superiority of Cayley-Klein metric over Ma-
halanobis ones and the effectiveness of our Cayley-Klein
metric learning methods.

1. Introduction
Distance metric plays an important role in many com-

puter vision and pattern recognition tasks, such as classifi-
cation [4, 30, 17], retrieval [2, 7] and clustering [19]. The
most widely used distance metric is the Euclidean metric,
which considers the input space as an isotropic one. How-
ever, such an isotropic assumption may not hold in many
practical applications. For this reason, Euclidean metric can
not fairly reflect the underlying relationships between input
instances, which further limits its performance in many ap-
plications [6, 8, 9, 24, 30].

A simple and popular solution is to replace the Euclidean
metric by Mahalanobis metric. While the Euclidean metric
treats all the data dimensions equally, Mahalanobis could
take the correlation among different data dimensions into
consideration. Basically, Mahalanobis metric can be viewed
as Euclidean metric on a global linear transformed input s-
pace. How to estimate such linear transformations on the
input space is at core of Mahalanobis metric learning, which
aims to obtain a distance metric better modeling the under-
lying relationship among input data [31, 25, 30, 5, 16, 21].

Except for learning a positive semidefinite matrix for
Mahalanobis metric, few attempts have been made for a

Figure 1. Results of similarity search on OSR (first two rows) and
PubFig (last two rows). We present for each query the 5 nearest
neighbors returned by our method (first row) and by LMNN (sec-
ond row). Results in blue correspond to images in the same class
as the query while results in red are images from different classes.
Our method can return more semantically relevant images.

proper non-Euclidean metric. In this paper, we present a
non-Euclidean metric beyond Mahalanobis framework. The
core idea lies in a novel distance metric defined based on the
non-Euclidean geometry discovered by A. Cayley and F. K-
lein in the 19th century. The so called Cayley-Klein metric,
induced by an invertible symmetric matrix, is a metric in
projective space defined using a cross-ratio. We show in
this paper that in special case the Cayley-Klein metric can
be considered as a generalized Mahalanobis metric. Fur-
thermore, by integrating it into two typical supervised met-
ric learning paradigms (MMC [31] and LMNN [30]), we
obtain two Cayley-Klein metric learning methods. Experi-



mental results show that the Cayley-Klein metric is a pow-
erful alternative to currently widely used distance metric,
and can be used in many applications. Figure 1 gives an ex-
ample of image retrieval by using Cayley-Klein metric and
Mahalanobis metric with LMNN learning strategy respec-
tively. For each query image, it returns the most 5 similar
images according to their used metrics. As can be seen, our
method consistently outperforms the state of the art by re-
turning more semantically relevant images.

The remainder of this paper is organized as follows.
Firstly, Section 2 reviews previous approaches on metric
learning. Then, Section 3 elaborates the Cayley-Klein met-
ric and its properties, followed by Section 4 that describes
how to learn a specific Cayley-Klein metric by leveraging
on labeled samples. Encouraging results of Cayley-Klein
metric as well as comparisons to Mahalanobis metric are
reported in Section 5. Finally, Section 6 concludes this pa-
per.

2. Related work
Metric learning aims to learn a specific distance func-

tion for a particular task, and is proven to be very useful
when dealing with problems that rely on distances. In the
Mahalanobis metric learning framework, the central task is
to learn a positive semidefinite matrix M to fit the squared
Mahalanobis distance d2(x, y) = (x− y)T M(x− y).

Perhaps the simplest case of metric learning arises in
the context of k-NN classification using Mahalanobis dis-
tances. The Mahalanobis metric can be equivalently viewed
as a global linear transformation of the input space and then
precedes k-NN classification using Euclidean distances.
Therefore, many classical dimensionality reduction meth-
ods can be viewed as a kind of metric learning. For exam-
ple, the well known PCA [12] finds a linear transformation
to map the input data to a lower dimensional space such that
the transformed data space captures the original information
as much as possible. Other supervised methods [28, 20] uti-
lize label information to discover such linear transformation
in order to maximally separate each class.

Generally, the class label information is presented in a
set of constraints incorporated in objective functions. Some
methods use pairwise constraints which have input training
data as similar and dissimilar pairs. The optimal distance
metric is supposed to keep instances in similar constraints
close, and simultaneously instances in dissimilar constraints
well separated [5, 21, 31]. Besides pairwise constraints,
there are methods proposed to learn the optimal distance
metric among triplet-wise training data [2, 7, 25, 30], even
with quadruplet-wise constraints [16].

Two of the most typical metric learning methods are
MMC [31] and LMNN [30]. In [31], Xing et al. proposed
to cast the metric learning problem for clustering as a con-
vex optimization problem, whose global optimized solution

can be efficiently solved. This is the first attempt of using
convex optimization for solving this problem in the liter-
ature. Specifically, MMC tries to maximize the distances
between pairs of instances with different labels and con-
strain the sum over distances of pairs of identical labeled in-
stances. LMNN [30] is a technique for Mahalanobis metric
learning in the k-NN classification setting by semidefinite
programming. Its learning target is to make the k-nearest
neighbors always in the same class while instances from d-
ifferent classes are separated by a large margin. The model
of LMNN is based on two simple intuitions for robust k-NN
classification: first, each instance should share the same la-
bel as its k nearest neighbors; second, instances with differ-
ent labels should be widely separated. As a result, LMNN
attempts to learn a linear transformation of the input space
so as to make the training inputs satisfy these properties. S-
ince there is no parametric assumption about the structure
or distribution of the input data, it performs rather well.

Recently, Riemannian metric and manifold learning are
becoming popular. Cheng [3] aims at learning a rectangu-
lar similarity matrix and tackles the metric learning prob-
lem in a Riemannian optimization framework. Huang et
al. [11] proposed to learn a Euclidean-to-Riemannian met-
ric for point-to-set classification. Besides, there are other
popular metric learning methods, such as non-linear metric
learning methods [32, 29, 13, 1], information theory based
methods [27, 5], and so on [10, 26, 18].

In this paper, we investigate a kind of non-Euclidean
metric learning problem. It is defined on the Cayley-Klein
metric, a kind of metric in projective space. Compared to
existing metrics, Cayley-Klein metric has several advan-
tages. First, the Cayley-Klein space is a special case of Rie-
mannian space with fixed curvature. Second, the Cayley-
Klein metric has an explicit definition while a general Rie-
mannian metric does not have. Finally, it is a generalization
of Mahalanobis metric by extending the metric definition
based on a linear transformation to a fractional transfor-
mation. As a result, Cayley-Klein metric is more general
compared to Euclidean and Mahalanobis metrics. Our main
contributions are: 1) We propose a non-Euclidean distance
to instead Mahalanobis based on a family of metrics named
Cayley-Klein; 2) We find the relationship between Cayley-
Klein metric and Mahalanobis metric, and prove that in
some specific cases the Cayley-Klein metric is a general-
ized version of Mahalanobis metric; 3) We elaborate how to
learn Cayley-Klein metric by optimizing over two kinds of
popular objectives, one based on the pairwise training ex-
amples and the other based on the triplet-wise training data;
4) We show in experiments that Cayley-Klein metric outper-
forms other widely used metrics on challenging Computer
Vision tasks.



3. Cayley-Klein metric
In mathematics, non-Euclidean geometry arose when

the parallel postulate of Euclidean geometry was set aside.
There are two traditional non-Euclidean geometries: ellip-
tic geometry and hyperbolic geometry. The essential d-
ifference among these two non-Euclidean geometries and
Euclidean geometry is the property of parallel lines. Ac-
cording to the Euclid’s fifth postulate, i.e. the parallel pos-
tulate, for any given line l and a point x (not on l) on a 2-
dimensional plane, there is exactly one line through x that
does not intersect l. By comparison, there are many lines
through x that intersect l in non-Euclidean geometry. More
specifically, any line through x would intersect l in elliptic
geometry. In hyperbolic geometry, although there are infi-
nite lines through x intersect l, there also have infinite lines
that do not intersect l.

A. Cayley noted that distance between points inside a
conic could be defined in terms of logarithm and projec-
tive cross-ratio function. His method was then exploited by
F. Klein to describe the non-Euclidean geometries [14] in
1871. As a result, it is called Cayley-Klein metric, which
can provide working models for elliptic and hyperbolic ge-
ometries, as well as Euclidean geometry.

In this section, we focus on the Cayley-Klein metric and
present some of its essential properties.

3.1. Definition

Given an invertible symmetric matrix Ψ ∈
R(n+1)×(n+1), its bilinear representation of x, y ∈ Rn can
be denoted by ψ(x, y):

ψ(x, y) = (xT , 1)Ψ

(
y
1

)
, ∀x, y ∈ Rn (1)

Instead of ψ(x, y), we take ψxy for short hereinafter.
If matrix Ψ is positive definite, then ψxx > 0, we can

define ρE(x, y) : Rn × Rn → R+ as:

ρE(x, y) =
k

2i
log

ψxy +
√
ψ2

xy − ψxxψyy

ψxy −
√
ψ2

xy − ψxxψyy

 (k > 0)

(2)
If matrix Ψ is indefinite, set Bn = {x ∈ Rn|ψxx < 0},

we can define ρH(x, y) : Bn × Bn → R+ as:

ρH(x, y) = −k
2

log

ψxy +
√
ψ2

xy − ψxxψyy

ψxy −
√
ψ2

xy − ψxxψyy

 (k > 0)

(3)
It can be shown that ρE(x, y) and ρH(x, y) are two met-

rics on Rn and Bn respectively as they satisfy the following
metric axioms:

• ρ(x, y) ≥ 0 (Non-negativity)

• ρ(x, y) = 0⇔ x = y (Identity of indiscernibles)

• ρ(x, y) = ρ(y, x) (Symmetry)

• ρ(x, z) ≤ ρ(x, y) + ρ(y, z) (Triangle inequality)

(Rn, ρE) is called elliptic geometry space and (Bn, ρH)
is called hyperbolic geometry space. ρE and ρH together
constitute the Cayley-Klein metric. For convenience, they
can be written in an unified form as following:

ρ(x, y) =
k

2

∣∣∣∣∣∣log

ψxy +
√
ψ2

xy − ψxxψyy

ψxy −
√
ψ2

xy − ψxxψyy

∣∣∣∣∣∣ (k > 0) (4)

where 1/k (−1/k) is related to the curvature of elliptic (hy-
perbolic) space.

According to the above definition, the Cayley-Klein met-
ric only relies on a symmetric matrix Ψ. In other word,
given a symmetric matrix, one can have a specific Cayley-
Klein metric. Therefore, Ψ is called the Cayley-Klein met-
ric matrix.

3.2. Invariance properties

According to Klein, the characteristic of any geometry is
determined by the type of correspondence under which its
relations are invariant, e.g. Euclidean geometry is invariant
under “similarity transformations”. This concept of similar-
ity, which plays a vital role in Euclidean geometry, however,
has no analogue in either of the non-Euclidean geometries,
i.e. elliptic geometry and hyperbolic geometry. In this sub-
section, we show some invariant properties of Cayley-Klein
metric.

Proposition 1: Given two points x, y ∈ Rn(Bn), let z+

and z− be the points at which the straight line determined by
x and y intersects the quadric surface Ω = {z|ψ(z, z) = 0},
then:

ρ(x, y) =
k

2
|log r(xy, z+z−)| (5)

where r(xy, z+z−) is the cross-ratio of this quadruple of
points {x, y, z+, z−}:

r(xy, z+z−) =
(x− z+)(y− z−)

(x− z−)(y− z+)
(6)

Given a Cayley-Klein metric matrix Ψ, let us consider
the following matrix group:

G(Ψ) = {G ∈ R(n+1)×(n+1)|G−T ΨG−1 = Ψ} (7)

For any matrix G = (gij) ∈ G(Ψ), it defines a linear
fractional transformation x′ = g(x) as following:

g(x) =


∑n

i=1 g1ixi + g1(n+1)∑n
i=1 g2ixi + g2(n+1)

...∑n
i=1 gnixi + gn(n+1)


∑n

i=1 g(n+1)ixi + g(n+1)(n+1)
(8)



It can be shown that the quadric surface Ω = {x|ψ(x, x) =
0} is invariant under this linear fractional transformation,
i.e. ψ(x, x) = 0⇔ ψ(g(x), g(x)) = 0 : ∀G ∈ G(Ψ).

Since the linear fractional transform is capable of pre-
serving cross-ratio, combined with Proposition 1, it holds
that: ∀x, y ∈ Rn(Bn), ρ(g(x), g(y)) = ρ(x, y) : ∀G ∈
G(Ψ). Therefore, Cayley-Klein metric is invariant to the
transformation group G(Ψ).

Proposition 2: For any G ∈ G(Ψ), there exists a (n+1)-
dimensional antisymmetric matrix W satisfying:

G = (Ψ + W)−1(Ψ−W) (9)

Therefore, transformation group G(Ψ) actually has n(n +
1)/2 essential parameters.

These invariance properties can simplify Cayley-Klein
metric computation by using the normal form obtained with
a fractional transformation. What is more, it gives theoreti-
cal foundation to the potential speedup of learning algorith-
m, because it is not necessary to iterate over corresponding
invariant group as all the results in this group are identical.

3.3. Generalized Mahalanobis metric

Based on the Cayley-Klein metric described before, here
we propose a special form of Cayley-Klein metric which
we call generalized Mahalanobis metric since it approaches
Mahalanobis metric in an extreme case.

Given a set of N data points {xi}Ni=1 ⊂ Rn, we denote
m as its mean and Σ as its inverse covariance. By definition,
Mahalanobis metric is defined as:

dΣ(xi, xj) =
√

(xi − xj)T Σ(xi − xj) (10)

To obtain a Cayley-Klein metric, we use m and Σ to define
two reversible symmetric matrices G± as:

G± =

(
Σ −Σm

−mT Σ mT Σm± k2

)
(k > 0) (11)

A typical value of k is around 3 in our experiments. G+

is positive definite while G− is indefinite. According to
Eq. (1), the bilinear form of G± is given by:

σ±(xi, xj) = (xTi , 1)G±
(

xj

1

)
= (xi −m)T Σ(xj −m)± k2 (k > 0)

(12)

Based on the definition of Cayley-Klein metric, we have:

dE(xi, xj) =
k

2i
log

σ+
xixj +

√
σ+2

xixj − σ+
xixi · σ+

xjxj

σ+
xixj −

√
σ+2

xixj − σ+
xixi · σ+

xjxj


(13)

Figure 2. Equidistant distribution of five fixed points for Cayley-
Klein metric and Mahalanobis metric. Under Mahalanobis met-
ric (marked as “o” in blue), all points with unit distance to a fixed
point (marked as “x” in black) form an ellipse, whose center is the
fixed point. This ellipse is identical for any fixed point, wherever
its location. On the contrary, under Cayley-Klein metric (marked
as “+” in red), all points with unit distance to the origin form a
shape similar to ellipse. However, this shape differs when the fixed
point moves.

dH(xi, xj) = −k
2

log

σ−xixj +
√
σ−2

xixj − σ−xixi · σ−xjxj

σ−xixj −
√
σ−2

xixj − σ−xixi · σ−xjxj


(14)

Note that in dH(xi, xj), data points x should satisfy: {x :
σ−(x, x) < 0}.

Proposition 3: The Cayley-Klein metrics dE(xi, xj),
dH(xi, xj) and Mahalanobis metric dΣ(xi, xj) have the fol-
lowing relationship:

lim
k→+∞

dE(xi, xj) = dΣ(xi, xj) = lim
k→+∞

dH(xi, xj) (15)

We call dE(xi, xj) and dH(xi, xj) as elliptic and hyper-
bolic Mahalanobis metrics, because they are deduced from
the elliptic and hyperbolic metrics respectively. On the oth-
er side, since 1/k (−1/k) is related to the curvature of
elliptic (hyperbolic) space, k approaches infinite is corre-
sponded to the Mahalanobis space. As a result, dE and dH
are considered together as generalized Mahalanobis metric,
which we would use for initialization in Cayley-Klein met-
ric learning as described in next section.

Figure 2 illustrates the difference between Cayley-Klein
metric and Mahalanobis metric in 2-dimensional space. Un-
der Mahalanobis metric, the equidistant distribution of a
fixed point is an ellipse and stays unchanged when the fixed
point changes its location. On the contrary, in case of
Cayley-Klein metric, the shape and scale of this equidis-
tant distribution would change, depending on the location
of the fixed point.



4. Cayley-Klein metric learning
In this section, we show how to learn an appropriate

Cayley-Klein metric matrix by leveraging on labeled data.
Specifically, two kinds of popular objectives are considered
respectively. One is based on MMC [31], while the other is
on the basis of LMNN [30]. Their corresponding methods
are called MMC Cayley-Klein metric learning and LMNN
Cayley-Klein metric learning, which we would describe in
this section. For simplicity, we consider the elliptic Cayley-
Klein metric described in Section 3 since it is defined on a
symmetric positive definite matrix.

Given a symmetric positive definite matrix G, its bilinear
form used in Cayley-Klein metric can be represented as:

σ(xi, xj) = (xT
i , 1)G

(
xj
1

)
, σij (16)

Accordingly, the elliptic Cayley-Klein metric is:

dCK(xi, xj) =
k

2i
log

σij +
√
σ2
ij − σiiσjj

σij −
√
σ2
ij − σiiσjj

 (k > 0)

(17)
In the following, we will use dCK(xi, xj) as a metric to
measure the distance between xi and xj and show how to
learn the metric matrix G by using pairwise and triplet-wise
constraints respectively.

4.1. MMC Cayley-Klein metric learning

As one classical method for metric learning, MMC takes
pairs of similar and dissimilar training data as input. It aims
to maximize distances between dissimilar pairs while con-
straining distances between similar pairs to be small under
a certain metric. Instead of Mahalanobis metric, we use
its pairwise constraint based objective function to learn a
Cayley-Klein metric.

4.1.1 Objective function

Similar to MMC, in order to minimize distances between
similar pairs and simultaneously maximize distances be-
tween dissimilar pairs, we have the following optimization
problem with the Cayley-Klein metric:

maximize
∑

(xi,xj)∈D dCK(xi, xj)

subject to (a)
∑

(xi,xj)∈S dCK(xi, xj) ≤ 1

(b) G > 0

(18)

where D is the set of dissimilar training pairs and S is the
set of similar ones.

Note that the first constraint is to make the problem feasi-
ble and bounded, and the second constraint enforces that G
is a positive definite matrix. We call this method CK-MMC.

4.1.2 Solver

The optimization problem in Eq. (18) can be solved by the
gradient ascent algorithm. At each iteration, we take a gra-
dient ascent step on the objective function

ε(G) =
∑

(xi,xj)∈D
dCK(xi, xj) (19)

w.r.t. G and then project G into the sets C1 = {G :∑
(xi,xj)∈S dCK(xi, xj) ≤ 1} and C2 = {G : G > 0}

iteratively.
For simplicity, let Cij = (xTi , 1)T (xTj , 1). Furthermore,

we can denote σ(xi, xj) as:

σ(xi, xj) = tr(CijG) (20)

Denoting the matrix G at the t-th iteration as Gt, we can
derive the gradient of the objective function at the t-th iter-
ation as:

Gt =
ε(G)

∂G
|Gt =

k

2i

∑
(xi,xj)∈D

 2Cij√
σ2
ij − σiiσjj

− σijCii

σii
√
σ2
ij − σiiσjj

− σijCjj

σjj
√
σ2
ij − σiiσjj

 (21)

The whole gradient ascending process is summarized in Al-
gorithm 1.

Algorithm 1 MMC Cayley-Klein Metric Learning
Input: training data and their labels, step size η.
Output: Cayley-Klein metric matrix G

1: Initialization: G0 = G+ according to Eq. (11)
2: repeat
3: repeat
4: G = arg minG′{‖G′ −G‖F : G′ ∈ C1}
5: G = arg minG′{‖G′ −G‖F : G′ ∈ C2}
6: until G converges
7: compute gradient Gt (Eq. (21))
8: G = G + η · Gt
9: until stopping criterion (e.g. convergence)

10: return G

In the inner iteration (line 3 to 7), projection onto C1

involves minimizing a quadratic objective with non-linear
constraints which is solved by interior point method. The
second projection onto C2 is implemented by eigenvalue
decomposition and truncating small eigenvalues by a small
positive threshold, which we set as 0.1 in our experiments.

4.2. LMNN Cayley-Klein metric learning

LMNN gives a metric learning technique by using
triplet-wise constraints, which is more general than the pair-
wise ones. In the following we describe how to learn a



Cayley-Klein metric according to the learning paradigm of
LMNN.

4.2.1 Objective function

The basic idea of LMNN is to make the k-nearest neigh-
bors of a data point lie in the same class as the data point,
and meanwhile make data points from different classes are
separated by a large margin. By using Cayley-Klein met-
ric in this framework, we have the following optimization
problem:

minimize
∑

i,j→i

(dCK(xi, xj) + µ
∑

l(1− yil)ξijl)

subject to (a) dCK(xi, xl)− dCK(xi, xj) ≥ 1− ξijl
(b) ξijl ≥ 0
(c) G > 0

(22)
We call this method CK-LMNN. Here the notation j → i
is to indicate that xj is a target neighbor of xi. yij ∈ {0, 1}
indicates whether xi and xj have the same class label. ξijl ≥
0 denotes the amount by which a differently labeled data
xl invades the “perimeter” around xi defined by its target
neighbor xj . The constant µ controls the trade-off between
the two terms in the objective function.

4.2.2 Solver

To ensure the symmetry of G, we consider working on its
decomposition instead of G, that is G = LT L with L ∈
R(n+1)×(n+1). For convenience we denote ξijl(L) as:

ξijl(L) = [1 + dCK(xi, xj)− dCK(xi, xl)]+ (23)

where [z]+ = z if z ≥ 0 and [z]+ = 0 if z < 0.
By considering the constraint (a) in Eq. (22) into the ob-

jective function, it becomes:

ε(L) =
∑
i,j→i

dCK(xi, xj) + µ
∑

i,j→i,l

(1− yil)ξijl(L) (24)

As ε(L) is derivative with respect to L, this optimization
can be solved by the gradient descent algorithm.

With notation of Cij = (xTi , 1)T (xT
j , 1), we have:

σ(xi, xj) = tr(CijG) = tr
(
Cij(LT L)

)
(25)

Denoting the matrix L at the t-th iteration as Lt, we can
derive the gradient of Eq. (24) w.r.t. L at the t-th iteration
as:

Lt =
∂ε(L)

∂L
|Lt

=
∑
i,j→i

∂dCK(xi, xj)
∂L

|Lt + µ
∑

i,j→i,l

(1− yil)
∂ξijl(L)

∂L
|Lt

(26)

where

∂dCK(xi, xj)
∂L

|Lt =
k

2i
· 2L

 2Cij√
σ2
ij − σiiσjj

− σijCii

σii
√
σ2
ij − σiiσjj

− σijCjj

σjj
√
σ2
ij − σiiσjj


(27)

and

∂ξijl(L)

∂L
|Lt ={

0, ξijl(L) < 0
∂dCK(xi,xj)

∂L |Lt − ∂dCK(xi,xl)
∂L |Lt , ξijl(L) > 0

(28)

After convergence, G is simply obtained as G = LT L. The
learning scheme is described in Algorithm 2.

Algorithm 2 LMNN Cayley-Klein Metric Learning
Input: training data and their labels, step size η.
Output: Cayley-Klein metric matrix G

1: Initialization: G0 = G+ according to Eq. (11)
2: compute L: G = LT L
3: repeat
4: compute gradient Lt (Eq. (26))
5: L = L− η · Lt

6: until stopping criterion (e.g. convergence)
7: return G = LT L

5. Experiments
In this section, we conduct various experiments to show

the effectiveness of the Cayley-Klein metric. Firstly, we
demonstrate the advantages of Cayley-Klein metric over
traditional Euclidean and Mahalanobis metrics, showing
how the classification accuracy can be improved by using
Cayley-Klein metric. Then we show how Cayley-Klein
metric learning can beat state of the art metric learning
methods in image classification tasks.

5.1. Effectiveness of Cayley-Klein metric

In this subsection, we conduct a 3-nearest neighbors
(3-NN) classification task to examine the effectiveness of
Euclidean metric, Mahalanobis metric, generalized Maha-
lanobis metric (denoted as G-Mahalanobis), learned Maha-
lanobis metrics (MMC and LMNN) and the learned Cayley-
Klein metrics (CK-MMC and CK-LMNN).

Datasets: In this experiment, we use eight different
datasets from the UCI Machine Learning Repository at
http://archive.ics.uci.edu/ml/datasets.
html, containing the Iris, Wine, Sonar, Vowel, Balance,

http://archive.ics.uci.edu/ml/datasets.html
http://archive.ics.uci.edu/ml/datasets.html


Datasets Data points Attributes Classes
Iris 150 4 3
Wine 178 13 3
Sonar 208 60 2
Vowel 528 10 11
Balance 625 4 3
Pima 768 8 2
Seg 2310 19 7
Letter 20000 16 26

Table 1. Characteristics of UCI Datasets.

Pima, Segmentation, and Letter datasets. All features are
first normalized over the training data to have zero mean
and unit variance and the test data features are normalized
using the corresponding training mean and variance. The
number of data points, feature dimensions, and the number
of classes for each dataset are summarized in Table 1.

Set up: Due to the small numbers of data points in
the Iris, Wine and Sonar datasets, we perform leave-one-
out cross-validation to measure the performance of different
metrics. For the Vowel, Balance and Pima, which are larg-
er than the first three, we randomly divide the dataset into a
training set of 250 data points and a test set of the remaining
data points (278 for the Vowel, 375 for the Balance and 518
for the Pima). Then we repeat this procedure 10 times inde-
pendently and record the average accuracies for these three
datasets. For the largest two datasets, namely the Segmen-
tation and Letter, we perform 10-fold cross-validation. That
is to randomly divide the dataset into 10 sets of equal size
and use one of them, in turn, as a test set and the remaining
nine together as a training set. We repeat this procedure 10
times independently and record the average accuracies.

Results: Table 2 shows the classification accuracies for
the seven evaluated metrics. For the first three datasets, s-
ince we perform leave-one-out cross-validation, results are
presented by mean accuracy. For the rest five datasets, re-
sults are reported by mean accuracy and standard deviation.

From the 2nd to the 4th columns of the table, namely the
classification accuracies obtained by Euclidean metric, Ma-
halanobis metric and generalized Mahalanobis metric, we
can see that generalized Mahalanobis metric outperforms
both Euclidean and Mahalanobis metrics, which validates
the effectiveness of Cayley-Klein metric.

Considering all the evaluated metrics, it turns out that
CK-LMNN achieves the best performance, closely fol-
lowed by the other three learned metrics, namely CK-
MMC, LMNN, and MMC. For all the datasets, CK-LMNN
and CK-MMC improve the performance by 5%-20% com-
pared to the Euclidean metric. Especially for the Wine
dataset, they increase the accuracy obtained by the Eu-
clidean metric by a margin over 20%. The good results
of CK-MMC and CK-LMNN are not surprising as both of

them use labeled information compared to others.
Table 3 compares the Cayley-Klein metric learning re-

sults with three kinds of initializations: identity matrix, ran-
dom matrix, and generalized Mahalanobis calculated as in
Section 3.3. It is clear that G-Mahalanobis gives a good ini-
tialization of the supervised Cayley-Klein metric learning.
For the remaining experiments, we use G-Mahalanobis for
initialization.

5.2. Image classification

Since our Cayley-Klein metric learning has a similar ob-
jective function to MMC or LMNN, we make a comparison
to them on image classification tasks. More specifically,
we focus on images represented by relative attributes [23].
Datasets: Two widely used datasets are adopted in our ex-
periments: Outdoor Scene Recognition Dataset (OSR) [22]
and a subset of Public Figure Face Database (PubFig) [15].
OSR contains 2688 images from 8 scene categories, while
the subset of PubFig contains 772 images from 8 random
identities. As in [23], 512-dimensional gist [22] descriptor
is used to generate a 6-dimensional relative attributes for
OSR. Similarly, a concatenation of the gist descriptor and
a 45-dimensional Lab color histogram is used for generat-
ing an 11-dimensional relative attributes for PubFig. These
relative attributes are used as input features to the metric
learning methods evaluated in this paper. We use the pub-
licly available codes of [23] to compute relative attributes.

Set up: We randomly select 30 images per class to learn
a distance metric, and use the remaining images for test-
ing. In the test stage, we use a 3-NN classifier based on the
learned distance metric. We repeat this procedure 30 times
and report the average classification accuracy across all cat-
egories. We use the publicly available codes [31, 30, 13]
of MMC, LMNN and GB-LMNN as baselines. In LMNN,
GB-LMNN and CK-LMNN, the k-nearest neighbors is set
to be 3, which is the default value suggested by LMNN.

Results: The classification results on the OSR and Pub-
Fig are listed in Table 4. As can be seen, by using Cayley-
Klein metric instead of Mahalanobis metric, both CK-MMC
and CK-LMNN outperform their competitors (CK-MMC
VS. MMC, and CK-LMNN VS. LMNN/GB-LMNN). CK-
MMC increases the accuracies of MMC by 3.1% and 2.2%
on the OSR and PubFig datasets, respectively. While com-
paring to the original LMNN algorithm, the accuracies
achieved by CK-LMNN are increased by 2.8% and 2.5%
on the OSR and PubFig datasets, respectively. Even for
the recently proposed non-linear LMNN (GB-LMNN), our
method has a better performance. Such a superior perfor-
mance of Cayley-Klein metric based methods demonstrates
the importance of a proper metric for image classification.

Table 5 shows the running times on OSR and PubFig
for different methods, which are average results of 30 run-
s. Generally speaking, using Cayley-Klein metric requires



Datasets Euclidean Mahalanobis G-Mahalanobis MMC CK-MMC LMNN CK-LMNN
Iris 90.0 93.3 96.7 95.9 96.8 96.6 97.0
Wine 74.2 88.9 94.9 91.1 95.2 95.4 95.5
Sonar 77.4 80.3 83.6 81.9 85.0 86.9 87.1
Vowel 85.0 ± 3.46 86.1 ± 3.91 87.3 ± 3.82 89.3 ± 1.35 92.1 ± 1.20 95.0 ± 1.72 96.1 ± 1.76
Balance 80.3 ± 1.90 82.1 ± 1.87 84.6 ± 1.96 86.1 ± 1.50 86.5 ± 1.51 87.7 ± 1.29 87.9 ± 1.38
Pima 70.4 ± 2.31 72.1 ± 1.34 73.9 ± 1.59 72.8 ± 1.97 74.3 ± 1.80 74.8 ± 1.33 75.2 ± 1.26
Seg 95.3 ± 2.56 96.9 ± 1.84 98.0 ± 1.70 96.9 ± 0.96 98.3 ± 0.98 97.4 ± 0.91 99.7 ± 0.92
Letter 93.6 ± 2.53 96.9 ± 1.87 98.1 ± 1.29 96.5 ± 1.29 98.5 ± 1.00 97.0 ± 0.83 99.8 ± 0.90

Table 2. Classification accuracies (mean in % for the first three datasets; mean and standard deviation in % for the rest five datasets) on
UCI Datasets. Generalized Mahalanobis metric outperforms both Euclidean and Mahalanobis metrics, and CK-LMNN achieves the best
performance.

Datasets CK-MMC(I) CK-MMC(R) CK-MMC(G) CK-LMNN(I) CK-LMNN(R) CK-LMNN(G)
Iris 96.4 95.6 96.8 96.8 96.5 97.0
Wine 92.3 91.0 95.2 94.8 93.9 95.5
Sonar 83.1 81.9 85.0 85.2 82.8 87.1
Vowel 91.5 ± 1.93 90.1 ± 3.00 92.1 ± 1.20 95.7 ± 2.03 91.3 ± 2.81 96.1 ± 1.76
Balance 85.3 ± 2.02 85.1 ± 2.97 86.5 ± 1.51 86.0 ± 2.31 85.7 ± 2.83 87.9 ± 1.38
Pima 73.4 ± 2.78 72.8 ± 3.01 74.3 ± 1.80 74.1 ± 1.90 73.8 ± 2.51 75.2 ± 1.26
Seg 98.1 ± 1.72 97.8 ± 1.89 98.3 ± 0.98 98.7 ± 1.41 98.2 ± 1.76 99.7 ± 0.92
Letter 98.0 ± 1.45 98.0 ± 1.81 98.5 ± 1.00 99.0 ± 1.32 98.8 ± 1.50 99.8 ± 0.90

Table 3. Comparison of different initializations. I represents initialization by an identity matrix, R means by a random matrix and G
denotes by the generalized Mahalanobis matrix calculated as in Section 3.3.

Method OSR PubFig
MMC [31] 64.0 ± 1.6 80.3 ± 1.0
CK-MMC 67.1 ± 1.6 82.5 ± 1.0
LMNN [30] 67.3 ± 1.3 78.8 ± 1.4
GB-LMNN [13] 69.3 ± 1.3 79.9 ± 1.6
CK-LMNN 70.1 ± 1.1 81.3 ± 1.7

Table 4. Classification accuracies (mean and standard deviation in
%) obtained on OSR and PubFig. CK-MMC and CK-LMNN have
a clear improvement over MMC and LMNN respectively.

a litter more time in testing as more operations are involved
in computing Cayley-Klein metric according to its defini-
tion. While for training, CK-MMC and CK-LMNN is com-
parable or better than MMC and LMNN, this is because al-
though Cayley-Klein requires more computations but it ac-
tually needs less iterations to convergence. Among all the
evaluated methods, GB-LMNN is the most efficient.

Figure 1 presents some recognition results of CK-LMNN
and LMNN [30]. We show for each query the 5 most sim-
ilar images using the metric learned by CK-LMNN (first
row) and LMNN (second row) respectively. Please see the
supplementary material for more results. It is clear that our
method could return more semantically relevant images.

Method Training time Testing time
OSR PubFig OSR PubFig

MMC [31] 3.46s 3.30s 0.22s 0.23s
CK-MMC 4.77s 4.87s 0.30s 0.31s
LMNN [30] 1.87s 6.20s 0.27s 0.29s
GB-LMNN [13] 1.12s 1.41s 0.19s 0.22s
CK-LMNN 3.06s 3.34s 0.47s 0.32s

Table 5. Running times on OSR and PubFig.

6. Conclusion

This paper introduces the Cayley-Klein metric as a pow-
erful alternative to the widely used Mahalanobis metric in
the community of metric learning. Cayley-Klein metric is
a more general metric in non-Euclidean space. We prove
in this paper that by carefully designing the Cayley-Klein
metric matrix, it approaches Mahalanobis metric in extreme
case. Moreover, two Cayley-Klein metric learning methods
are proposed to use labeled training data to learn an appro-
priate metric for a given task. Experiments on image classi-
fication have shown that better performance can be obtained
by using Cayley-Klein metric. One of the future work is to
apply Cayley-Klein metric to other visual applications.
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