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Shape descriptor refers to an informative description that provides a 3D ob-
ject with an identification as a member of some category. The development
of an effective and efficient 3D shape descriptor poses several technical chal-
lenges, including, in particular, the high data complexity of 3D models and
their representations, the structural variations, noise, and incompleteness
present in 3D models [1, 2]. To address these challenges, we develop a
deep shape descriptor (DeepSD), which includes 1) the heat shape descrip-
tor (HeatSD) that uses the point-based heat kernel signature (HKS) and 2)
the combination of the eigen-shape descriptor (ESD) and the fisher-shape
descriptor (FSD). Our deep shape descriptor has high discriminative power
that tends to maximizes the inter-class margin while minimizing the intra-
class variance.

DeepSD is mainly constitute of four components, where the illustration
on how these four components are mapped onto a deep neural network is
illustrated in Figure 1. The first component is a 3D shape database where
a large volume of shapes are stored. The second component is shape fea-
ture extraction where two features: heat kernel signature (HKS) and heat
shape descriptor (HeatSD), are extracted. The third component is a deep
neural network for learning deep shape descriptor. A multi-layer deep neu-
ral network is used in our method. A collection of HeatSDs are used in
the training of principal component analysis (PCA) and linear discriminant
analysis (LDA) to generate the Eigen-shape descriptor (FSD) and Fisher-
shape descriptor (ESD) respectively. The fourth component is the target
value of DNN where pre-computed ESD and FSD are used as target values
in the training the DNN.

Figure 1: Pipeline of learning deep shape descriptor. Given input shapes,
three steps are included along with the pipeline: 1) Heat kernel signatures
are extracted for each shape in the database. Heat shape descriptor are com-
puted based on HKS. 2) Heat shape descriptors are fed into two deep neural
networks with target values using ESD and FSD, respectively. 3)The deep
shape descriptor is formed by concatenating nodes in hidden layer (circled
by yellow dash lines).

Heat kernel signature: The heat kernel Ht(i, j) aggregates heat flow
through all possible paths between two vertices on the meshed surface, and
a heat kernel signature can be defined as:

HKS(p) = (Ht1(p, p),Ht2(p, p), . . . ,Htn(p, p)) (1)
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Figure 2: Illustration of heat shape descriptor. (A) illustrates the HeatSD for
three centaur models undergone isometric transformation. (B) illustrates the
HeatSD for three dinosaur models with moderate structural variations.

where p denotes a point on the surface, HKS(p) denotes the heat kernel
signature at point p, Ht(p, p) denotes the heat kernel value at point p, tn
denotes the diffusion time of the nth sample point.

Heat shape descriptor: HetaSD is developed using probability distri-
bution of HKS values at all vertices and at all scales. At each scale, HeatSD
is defined based on the probability distribution of HKS at that scale. HeatSD
is a multi-scale shape descriptor, thereby it can provide a complete and local-
to-global description of 3D shape. Figure 2 displays 3D objects and their
corresponding HeatSDs.

Deep shape descriptor: We use the architecture of a many-toone en-
coder neural network to develop our encoder for deep shape descriptor. By
enforcing the target value to be unique for input HeatSDs from the same
group but with structural variations, the deep shape descriptor represented
by the neurons in the hidden layer is invariant to within-group structural
variations but will discriminate against other groups. We set the target value
of the neural network as pre-computed Eigen-shape descriptor and Fisher-
shape descriptor for each group. We formulate the objective function of
the proposed sparse many-to-one encoder by the square-loss function with
sparse constraint on the weights as:
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where L is the number of layers in the deep neural network, W is the weight
matrix of the multiple-hidden-layer neural network, b is the bias matrix
of the neural network, x j

i represents the j-th training sample from the i-
th group, h(x j

i ,W,b) in general is a non-linear mapping from the input x j
i to

the output. The parameter λ is the weight of the regularizer, and Yi is the
target value for the i-th group.
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