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Abstract

Shape descriptor is a concise yet informative represen-
tation that provides a 3D object with an identification as
a member of some category. We have developed a concise
deep shape descriptor to address challenging issues from
ever-growing 3D datasets in areas as diverse as engineer-
ing, medicine, and biology. Specifically, in this paper, we
developed novel techniques to extract concise but geomet-
rically informative shape descriptor and new methods of
defining Eigen-shape descriptor and Fisher-shape descrip-
tor to guide the training of a deep neural network. Our deep
shape descriptor tends to maximize the inter-class margin
while minimize the intra-class variance. Our new shape de-
scriptor addresses the challenges posed by the high com-
plexity of 3D model and data representation, and the struc-
tural variations and noise present in 3D models. Experi-
mental results on 3D shape retrieval demonstrate the supe-
rior performance of deep shape descriptor over other state-
of-the-art techniques in handling noise, incompleteness and
structural variations.

1. Introduction

1.1. Background

With recent advancements in 3D acquisition and print-
ing techniques, we have observed an exponential increase
in 3D-meshed surface models across a variety of fields,
such as engineering, entertainment, and medical imaging
[41, 36, 28, 12, 11, 8, 40, 1]. Shape descriptor refers to
an informative description that provides a 3D object with
an identification as a member of some category. The de-
velopment of an effective and efficient 3D shape descriptor
poses several technical challenges, including, in particular,
the high data complexity of 3D models and their represen-
tations, the structural variations, noise, and incompleteness
present in 3D models [47, 24, 15, 49, 43, 36, 27, 23, 18, 35].

Therefore, effective solutions must be able to address the
following issues.

• The high data complexity of 3D models [36, 8, 46, 9].
3D geometric data is often featured as a highly com-
plex and abstract representation for an object and with
severe loss of critical descriptive information such
as color, texture and appearance [6] to some extent.
The high data complexity in 3D model representation
therefore presents great challenges in the development
of a concise but geometrically informative description
for efficient and real-time 3D shape analysis.

• The structural variations present in 3D models [8, 46,
17]. Many 3D objects contain dynamical units with
their shape flexibility and variations play an essential
role in certain types of functional processes. There-
fore, the geometric structures of 3D models are of-
ten compounded by highly variable complexity caus-
ing large structural variations. For instance, 3D human
models are dynamical units with different poses, and
3D protein models are functional units with their 3D
shape flexibility playing an essential role in a variety
of biological processes.

• Noise, incompleteness, and occlusions, etc [17, 16].
3D data are often noisy and incomplete after acquisi-
tion and meshing [36, 6]. A 3D model is composed
of an unorganized sets of polygons that form “poly-
gon soups”. As stated in [36], a 3D model often con-
tains missing, wrongly oriented, intersecting, disjoint,
and /or overlapping polygons. For example, the classic
model Utah teapot is missing its bottom and rim, and
the Stanford Bunny has several holes along its base.

1.2. Related Works

There have been several prior works that address the
challenging issues as discussed above. These prior works
follow two approaches: 1) develop better 3D shape signa-
ture and descriptor and 2) develop methods to automatically



Figure 1: Main components of the proposed method.

Figure 2: Pipeline of learning deep shape descriptor. Given input shapes, three steps are included along with the pipeline:
1)Heat kernel signatures are extracted for each shape in the database. Heat shape descriptor are computed based on HKS.
2) Heat shape descriptors are fed into two deep neural networks with target values using ESD and FSD, respectively. 3)The
deep shape descriptor is formed by concatenating nodes in hidden layer (circled by yellow dash lines).

learn the 3D features. We will briefly review the related
works from these two aspects:

3D shape signatures and descriptors: 3D shape sig-
nature and descriptor are succinct and compact represen-
tations of 3D object that capture the geometric essence of
a 3D object[19]. In this paper, shape signature is referred
to as a local description for a point on a 3D surface and
shape descriptor is referred to as a global description for the
entire shape. Shape signatures and descriptors, which are
based on heat diffusion, have been proved to be very effec-
tive in capturing the geometric essence of 3D shapes. On
the other hand, a large amount of non-diffusion based shape
features are also proposed in the literature, e.g., D2 shape
distribution [36], statistical moments [15], Fourier descrip-
tor [49, 42], Light Field Descriptor [10], Eigenvalue De-
scriptor [25], etc. Recent efforts on robust 3D shape feature

development are mainly based on diffusion [45, 9, 41, 37].
The global point signature (GPS)[41] uses eigenvalues and
eigenfunctions of the Laplace-Beltrami defined on a 3D sur-
face to characterize points. Heat kernel signature (HKS)
and wave kernel signature (WKS) [2, ?] have gained atten-
tion because of their multi-scale property and invariance to
isometric deformations. Despite the effectiveness of GPS,
HKS and WKS, they are point-based shape signatures that
do not provide a global description of the entire shape.
A global shape descriptor, named temperature distribution
(TD) descriptor, is developed based on HKS information
at a single scale [17] to represent the entire shape. De-
spite the efficiency and effectiveness of TD descriptor, it
only describes the entire shape at one single scale resulting
in an incomplete description of 3D objects [17]. As indi-
cated in [17] the selection of an appropriate scale is often



not straightforward.
Feature learning: Hand-crafted shape descriptors are

often not robust enough to deal with structural variations
present in 3D models. Discriminative feature learning
from large datasets provides an alternative way to con-
struct deformation-invariant features. This method has been
widely used in computer vision and image processing. The
bag-of-features (BOF) method is used to extract a frequency
histogram of geometric words for shape retrieval in previous
works [13, 14, 22]. However, when performing k-means
clustering method, the coding vector on the visual word has
only nonzero entry (i.e., 1) to indicate the cluster label. Due
to the restrictive constraint, the learned ball-like clusters
may not accurately characterize the intricate feature space
of shapes with large variations. In addition, as a holistic
structure representation, BOF does not contain local struc-
tural information [51], so that this method does not perform
well in discriminating structural variations among shapes
from different classes. Beyond the regular BOF approach,
Litiman et al. [31] propose a supervised BOF method to
learn shape descriptors for shape retrieval. Recently, deep
models like deep auto-encoder [5, 48, 39], convolutional
neural network [38, 29, 26], restricted Boltzmann machine
[21, 33, 34] and their variants are widely used in computer
vision applications. Despite the enormous success of deep
learning as a technique for feature learning in images and
videos [3, 32, 52, 50], very few techniques based on deep
learning have been developed for learning 3D shape fea-
tures. Zhu et al. [53] attempt to learn a 3D shape rep-
resentation by projecting a 3D shape into many 2D views
and then perform training on the projected 2D shapes. The
shape representation developed in [53] is essentially based
on 2D image feature learning. This does not result in a con-
cise shape descriptor that can represent the 3D shape well.
It has the following shortcomings: 1) a collection of 2D
projection images is not a concise form to represent a 3D
shape as it increases the size of the data, 2) a collection of
2D projection images is not geometrically informative as it
does not capture the underlying geometric essence of a 3D
object. For instance it is very sensitive to isometric geomet-
ric transformation, 3) Projected 2D shapes are basically 2D
contour representation of 3D shapes. They do not include
critical descriptive information such as color, texture and
appearance. Therefore, the rationale of learning 3D shape
representation from 2D contours needs to be further justi-
fied.

1.3. Our solution: 3D Deep Shape Descriptor

To address the challenging issues discussed in previ-
ous sections, we have developed a set of algorithms and
techniques for learning a deep shape descriptor (DeepSD)
based on the use of a deep neural network. Specifically, we
have developed 1) heat shape descriptor (HeatSD) based

on point based heat kernel signature (HKS),and 2) new def-
initions of Eigen-shape descriptor (ESD) and Fisher-shape
descriptor (ESD) to guide the training of deep neural net-
work. Our deep shape descriptor has high discriminative
power that tends to maximizes the inter-class margin while
minimizing the intra-class variance. Although the focus of
the present approach is for 3D shapes, the proposed tech-
niques can be applied directly or be extended to other data
modalities such as 2D images and 2D sketches.

Figure 1 illustrates pipeline of the proposed project.
There are four main components and Figure 2 illustrates a
mapping of these four components onto a deep neural net-
work. The first component is a 3D shape database where a
large volume of shapes are stored. The second component
is shape feature extraction where two features: heat kernel
signature (HKS) and heat shape descriptor (HeatSD), are
extracted. The third component is a deep neural network
for learning deep shape descriptor. A multi-layer deep neu-
ral network is used in our method. A collection of HeatSDs
are used in the training of principal component analysis
(PCA) and linear discriminant analysis (LDA) to generate
the Eigen-shape descriptor (FSD) and Fisher-shape descrip-
tor (ESD) respectively. The fourth component is the target
value of Deep Neural Network (DNN) where pre-computed
ESD and FSD are used as target values in the training the
DNN. In the pipeline, there are two communication routes,
indicated by orange and blue arrows. The communication
route in blue is for the training of the DNN model, where
training data from 3D shape database are used as input.
The communication route in orange is for the testing data.
After training, the deep encoder is used to construct deep
shape descriptor. Features in the middle hidden layers are
extracted as deep shape descriptor for representing the 3D
shape.

2. Method

2.1. Shape feature extraction

Shape feature refers to a high-level yet informative de-
scription that is able to capture a certain type of geomet-
ric essence of 3D objects. Two main shape features: heat
kernel signature and heat shape descriptor are explained as
follows.

Heat kernel signature: Heat kernel signature has been
widely used for 3D shape analysis [45]. The 3D model is
represented as a graphG = (V,E,W ), where V is the set of
vertices, E is the set of edges, and W represents the weight
values for the edges. Given a graph constructed by connect-
ing pairs of vertices on a surface with weighted edges, the
heat flow on the surface can be quantitatively approximated



Figure 3: Illustration of heat shape descriptor. (A) illus-
trates the HeatSD for three centaur models undergone iso-
metric transformation. (B) illustrates the HeatSD for three
dinosaur models with moderate structural variations.

by the heat kernel:

ht(p1, p2) =

∞∑
i=0

(−λ′it)φi(p1)φi(p2), (1)

which is a function of two points p1 and p2 on the network
at a given time t, where λ′i and φi are the i-th eigenvalue and
eigenfunction of the Laplace-Beltrami operator [45]. Since
heat kernel aggregates heat flow through all possible paths
between two vertices on the meshed surface, it is sensitive
to the geometric structure of the 3D surface.

∂Ht

∂t
= −LHt (2)

where Ht denotes the heat kernel, L denotes the Laplace-
Beltrami, and t denotes diffusion time. Heat kernel signa-
ture is defined by:

HKS(p) = (Ht1(p, p), Ht2(p, p), . . . ,Htn(p, p)), (3)

where p denotes a point on the surface, HKS(p) denotes
the heat kernel signature at point p, Ht(p, p) denotes the
heat kernel value at point p, tn denotes the diffusion time
of the n − th sample point. HKS has attractive geometric
properties that includes invariance to isometric transforma-
tion, robustness against other geometric changes and local
numerical noise, and multi-scale representation with scale
parameter of diffusion time t [45].

Heat shape descriptor: To describe the entire shape,
we develop a multi-scale shape descriptor based on HKS.

Heat shape descriptor (HetaSD) is developed using proba-
bility distribution of HKS values at all vertices and at all
scales. At each scale, HeatSD is defined based on the prob-
ability distribution of HKS at that scale. In our paper, we
use histogram to give an estimation of probability distribu-
tion of HKS values. Therefore, given HKS has N samples
in diffusion time and NB is the number of bins used in the
histogram, a HeatSD will be formed as a NB × N matrix
(for example, the colormapped HeatSDs shown in Figure 3
are of size 64 × 100 with 64 bins in the histogram and 100
samples in time). Therefore, in contrast to TD descriptor
for a single-scale description of shapes, HeatSD is a multi-
scale shape descriptor, thereby providing a complete and
local-to-global description of 3D shape. Figure 3 displays
3D objects and their corresponding HeatSDs (depicted us-
ing colormaps). As seen in the top two rows of Figure 3,
three centaur models that have undergone isometric geo-
metric transformations have consistent HeatSD shape de-
scriptions. This demonstrates the invariance of HeatSD to
isometric transformations. The bottom two rows of Figure
3 contain three dinosaur models with structural variations,
and their HeatSDs (underneath each 3D dinosaur shape)
capture their common geometric characteristics despite in-
consistency in their detailed descriptions.

2.2. Deep shape descriptor

It is challenging to find hand-crafted shape descriptors
that are robust to large structural variations. Fortunately,
the large volume of data and powerful computational re-
sources make it possible to learn a deep shape descriptor
that is insensitive to structural variations. As illustrated in
Figure 2, four components, Input Shape, Shape Features,
Deep Learning, and Target are included in the process of
learning a deep shape descriptor. We will explain two com-
ponents related to training DNN: Deep learning and Target.
Since one of the contributions in this project is the devel-
opment of Eigen-shape descriptor (ESD) and Fisher-shape
descriptor (FSD) to guide the training of DNN in order to
maximize inter-class margin while minimizing intra-class
variance, we will first explain the target component and then
explain the deep learning component.

Target values: The target of the our proposed DNN is
ESD or FSD. As indicated in Figure 4, Eigen-shape de-
scriptors (on the right column) are computed by training
a principle component analysis (PCA) model on a set of
pre-computed HeatSD obtained from each group (in middle
column). Fisher-shape descriptors (on the left column) are
computed by training a linear discriminative analysis (LDA)
model on a set of pre-computed HeatSDs obtained from
each group. Separate Eigen-shape descriptors and Fisher-
shape descriptors are trained for each group. The DNN
will force the mapping of HeatSDs from the same group
to their assigned ESD or FSD (the mapping process will be



Figure 4: Pipeline of generating Eigen-shape descriptor and Fisher-shape descriptor. A collection of Heat shape descriptors
are used to train Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). The trained Eigen-shape
descriptors are illustrated on the right and Fisher-shape descriptors are shown on the left.

explained below). Mathematically, the ESD and FSD are
defined as:

1. Eigen-shape descriptor

S =
1

n

n∑
i=1

(xi − µ)(xi − µ)T (4)

where S is the covariance matrix for the set of training
shape descriptors xi, and

Svi = λivi, i = 1, 2, ..., n (5)

where vi is the i-th Eigen-shape

2. Fisher-shape descriptor

SB =

c∑
i=1

Ni(µi − µ)(µi − µ)T (6)

where SB is the scatter matrix reflecting the margin
among different class and µi is the mean of class i,
and µ is the total mean.

SW =

c∑
i=1

∑
xj∈Xi

(xj − µi)(xj − µi)
T (7)

where SW is the scatter matrix reflecting closeness
within the same classes, µi is the mean of class i.

SBvi = λiSwvi (8)

where vi is the i-th Fisher-shape

Deep Learning: We use the architecture of a many-to-
one encoder neural network to develop our encoder for deep
shape descriptor [4, 20]. A many-to-one encoder forces the
inputs from the same class to be mapped to a unique target
value, which is different from the original auto-encoder that
sets the target value to be identical to the input. By enforc-
ing the target value to be unique for input HeatSDs from the
same group but with structural variations, the deep shape
descriptor represented by the neurons in the hidden layer is
invariant to within-group structural variations but will dis-
criminate against other groups. We developed a new train-
ing method by setting target value as pre-computed Eigen-
shape descriptor and Fisher-shape descriptor for each group
as described earlier. This new training strategy will increase
the discriminative power of deep shape descriptor by max-
imizing inter-class margin and minimizing intra-class vari-
ance. To avoid over-fitting, we impose the l2 norm con-
straint on the weights of the many-to-one encoder neural
network. We formulate the objective function of the pro-
posed sparse many-to-one encoder by the square-loss func-
tion with sparse constraint on the weights as:

argminW,b
1

2

∑
i,j

∥∥∥Yi − h(xji ,W, b)∥∥∥2
2
+
λ

2
‖W‖2F , (9)

where L is the number of layers in the deep neural net-
work, W is the weight matrix of the multiple-hidden-layer
neural network, b is the bias matrix of the neural network,
xji represents the j-th training sample from the i-th group,
h(xji ,W, b) in general is a non-linear mapping from the in-
put xji to the output. The parameter λ is the weight of the



regularizer, and Yi is the target value for the i-th group. For
each group of shapes, two encoders will be trained: one is
trained by setting the target value Yi as the i-th ESD and
the other is trained by setting the target value Yi as the i-th
FSD (see Figure 4). Because we impose that the target value
be unique for all input HeatSDs from the same group, the
deep shape descriptor extracted from hidden layer will be
insensitive to intra-class structural variations. At the same
time, because of discriminative power of target values (ei-
ther ESD or FSD), the deep shape descriptor will be dis-
criminative with a large inter-class margin.

3. Experiments
We carry out a set of experiments for shape retrieval

and assessed the performance of our deep shape descrip-
tor. The 3D models used in the experiments were cho-
sen from the following databases: SHREC’10 Shape-
Google and McGill 3D benchmark datasets [30, 44].
The right hand side of Figure 5 displays a few 3D
models in the McGill dataset and we refer readers to
SHREC’10 website (http://tosca.cs.technion.
ac.il/book/shrec_robustness2010.html) for
graphical visualization of SHREC’10 ShapeGoogle mod-
els. The SHREC’10 dataset contains 715 shapes from 13
categories whereas the McGill dataset contains 456 shapes
from 19 categories. The 3D models from datasets have un-
dergone different types of geometric transformations which
lead to various levels of structural variations. In the experi-
ments, we will train our deep neural network by using ran-
domly selected samples from each group. The deep shape
descriptors for testing models are computed based on the
trained deep encoder. For HKS, we use samples 100 in
time and use 128 bins in the histogram, therefore, HeatSD
is represented by 128 × 100 matrix. We will evaluate the
effectiveness and efficiency of DeepSD from 3D shape re-
trieval experiments. The Precision-Recall curve, a widely
used tool for evaluating the performance of shape descrip-
tors, is chosen for the evaluation of our experimental result.
The precision and recall for each search process initiated by
a query model are recorded and then averaged to produce
the Precision-Recall curve.

3.1. Comparisons

3.1.1 Comparison between HeatSD and DeepSD

HeatSD is a newly developed hand-crafted shape descriptor
in this paper. It has demonstrated a good capability of de-
scribing deformable shapes with structural variations. Since
DeepSD is learned based upon HeatSD, in this experiment,
we are interested in knowing how much performance gained
by deep learning technique. We compare the performance
between HeatSD and DeepSD on retrieval results on McGill
3D benchmark dataset. We can see from Figure 5, there

Figure 5: Comparison between HeatSD and DeepSD.

are four groups of 3D models sampled from McGill dataset
with 12 shapes in total displayed. As shown in Figure, the
models from each group demonstrate a variety of structural
variations to some extent. We randomly choose 5 shapes
from each category to train deep neural network. The ESD
and FSD are pre-computed and used as the setting of target
values of deep neural network. The shape retrieval perfor-
mance for HeatSD and DeepSD are compared on the left
hand side of Figure 5. We can see from the comparison
result that DeepSD demonstrates a better retrieval perfor-
mance than HeatSD. The significant performance gain of
DeepSD over HeatSD clearly indicates the effectiveness of
deep learning as a technique to learn deep shape descriptor
in this paper.

3.1.2 Comparison to HKS-Covariance descriptor

One of state of the art shape descriptor is covariance de-
scriptor [46]. The key idea of covariance descriptors is us-
ing covariance matrices of hand crafted descriptors rather
than the descriptors themselves to form a new descriptor for
the shape [46]. In this experiment, we will conduct retrieval
experiments on McGill dataset to compare the performance
of DeepSD to Covariance Descriptors based on covariance
image [46]. We form a HKS-covariance descriptor by com-
puting the covariance matrices of HKS. Please note that
covariance descriptors can fuse different descriptors to en-
hance the discriminative power. Given the fact that DeepSD
is trained based on HKS information, we only compare to
the HKS based covariance descriptors. The comparison re-
sult is shown in Figure 8, from which we can see a clear
advantage gain of DeepSD over HKS-Covariance Descrip-
tor. The results further explain why a hand-crafted shape
descriptor is not effective enough in capturing the common
geometric features for a collection of 3D models with large
structural variations. However, deep neural network as a
technique is able to learn the common shape description for
the shapes with structural variations.

http://tosca.cs.technion.ac.il/book/shrec_robustness2010.html
http://tosca.cs.technion.ac.il/book/shrec_robustness2010.html


Figure 6: Shape retrieval performance on models at differ-
ent noisy levels.

3.2. Resistance to noise

As discussed in the introduction, a desirable quality of
shape descriptor is noise resistance. Thus, we conduct ex-
periments on noisy models and demonstrate that DeepSD is
not sensitive to numerical noise on 3D models. To prepare
the noisy dataset, we simulate noise on the 3D model by
applying an increasing intensity of random normal noise to
the models. The noise level C is defined as a percentage of
the maximum dimension of bounding box for the model.

C = R′ × S′ ×Md × ~N ; (10)

where R′ is a random scalar with values that range from 0
to 1, S′ is the noise level, Md is the maximum dimension
of bounding box for the 3D model, and ~N is the normal di-
rection of the point on which the noise C will be added. In
Figure 6, the blue model is a clean human model, the green
model is a model with addition of noise at level of 0.02, and
the red model is a model with addition of noise at level of
0.04. As we can see from the figure, the geometric features
of the noisy human model with level of 0.04 have signifi-
cantly altered and deteriorated. The robustness to noise cor-
rupted on the models is a desirable performance indicator
for a shape descriptor. It will be of great interest to study
how DeepSD performs against the noise since most of hand
crafted shape descriptors are vulnerable to the noise. Spe-
cially if shape descriptors rely on local geometric features
such as Gaussian curvatures and local diameters [19], their
qualities would be dramatically affected by the geometric
corruption due to noise.

We perform three retrieval tests on clean, moderately
noisy, and highly noisy models. Three human models
(colored blue, green, and red) are illustrated to provide
a visualization of geometric deterioration for the models.
The retrieval performance are compared in Figure 6 using
Precision-Recall curves. The blue, green and red curves are
results for the clean, moderately noisy and highly models
respectively. The results show DeepSD is tolerant to noise
as the red and blue curves are slightly less convex than the

Figure 7: Top: Precision-Recall plot shape retrieval perfor-
mance on incomplete models. Bottom: partial shape re-
trieval. The models shown in the first row are partial and
incomplete models. Each column represents the retrieval
result using the 3D model in the first row of each column
as the query model. Top 7 retrieval results are listed in the
figure.

blue curve. We can say that the performance drops slightly
in response to the increase in noise. The overlap between
the red and green curves indicates that DeepSD is robust to
noise.

3.3. Partial shape retrieval

Due to the way how 3D models are generated, they al-
ways present in an incomplete nature [36, 6]. To further
study the performance of DeepSD against incomplete 3D
models, we design a shape retrieval experiment on partial
models. To prepare the incomplete 3D models, we select a
number of models from each category in the McGill dataset
and manually remove some parts of the model, for example,
remove left wing for an airplane as shown in Figure 7. To
perform the partial shape retrieval, we first compute HeatSD
for incomplete models and construct the DeepSD for them
through trained deep encoder. Note that, for a fair com-
parison, we do not use incomplete models to re-train DNN
but directly use the DNN model previously trained based on
the intact models. We select one incomplete model as query
and display the corresponding retrieval result (see Figure 7).



Figure 8: Comparison between DeepSD and HKS Covari-
ance Descriptor.

The query models are shown in the first row in Figure 7 and
followed by seven top retrieval results in each column. For
example, in the first column, the query model is an airplane
with a missing wing on the left and all of retrieval models
are airplanes shown in the first column. We only list top
seven retrieval results with incorrect retrieval model boxed
in blue. Based on Figure 7, we can find that most of the re-
trieval results are correct except for the one on the bottom of
fifth column. The 3D fish model is retrieved by an incom-
plete dinosaur query model. We notice that there are only
six dinosaur models in the database, and the dinosaur and
the fish models share a similar geometric property that both
models have large torsos. This might be the reason why our
system retrieves the fish model instead of other models like
ants and hands. The Precision-Recall curve retrieval perfor-
mance of the incomplete 3D models is also given in Figure
7.

3.4. Comparison to ShapeGoogle

ShapeGoogle [7] uses bag-of-features (BOF) method
and HKS to extract a frequency histogram of geometric
words for 3D shape retrieval. Different from other descrip-
tor, BOF is a learned feature which is robust to structural
variations [7]. In this test, we compare DeepSD to Shape-
Google based on the retrieval result on SHREC’10 Shape-
Google dataset. The retrieval results are compared in Fig-
ure 9. As indicated by the comparison result, DeepSD per-
forms reasonably better than ShapeGoogle. This might be
because bag-of-words technique uses k-means clustering to
construct geometric words. The coding vector on the vi-
sual word has only nonzero entry (i.e., 1) to indicate the
cluster label. Due to the restrictive constraint, the learned
ball-like clusters may not be able to accurately characterize
the intricate feature space of shapes with large variations.
In contrast, deep encoder is able to learn a discriminative
low-dimensional feature space through a training guided by
Eigen-shape descriptor (ESD) and Fisher-shape descriptor

Figure 9: Comparison between DeepSD and Shapegoogle.

(FSD), which maximize inter-class margin and minimize
the intra-class variance. Therefore DeepSD produced by
deep encoder will be equipped with a better discriminative
power for shape retrieval.

4. Conclusion
We develop a unified framework based on deep neural

network (DNN) for learning 3D deep shape descriptors with
the application in 3D shape retrieval. The proposed method
utilizes state-of-the-art techniques from multiple research
domains including computational geometry, computer vi-
sion and deep learning not only cope with the complexity
of 3D geometry data, but also the structural variation and
inconsistency in 3D shape description.
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