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Abstract

Many existing recognition algorithms combine different

modalities based on training accuracy but do not consider

the possibility of noise at test time. We describe an algo-

rithm that perturbs test features so that all modalities pre-

dict the same class. We enforce this perturbation to be as

small as possible via a quadratic program (QP) for con-

tinuous features, and a mixed integer program (MIP) for

binary features. To efficiently solve the MIP, we provide a

greedy algorithm and empirically show that its solution is

very close to that of a state-of-the-art MIP solver. We eval-

uate our algorithm on several datasets and show that the

method outperforms existing approaches.

1. Introduction

Combining information from multiple sources - multi-

ple sensor modalities or multiple feature channels applied

to a single sensor modality - is generally advantageous for

recognition problems. For example, a self-driving car can

better navigate its environment using multiple sensors in-

cluding color cameras, depth sensors, inertial sensors, etc.

Using both color and depth cameras, instead of either, can

significantly improve performance of computer vision tasks

such as object categorization, detection, tracking, segmen-

tation and others [22, 9, 25]. In biometrics, fingerprints

from multiple fingers can be used, or fingerprint and iris

can be combined to determine identity. In this paper, we

consider classification by fusing information from multiple

modalities and present an algorithm for multi-modal fusion

by enforcing the intuitive constraint that the predicted class

label should be consistent across all modalities.

Fusing multiple modalities for classification has been ex-

plored in many computer vision applications. These ap-

proaches can broadly be divided into three categories: (1)

feature level fusion, (2) score level fusion, and (3) decision

level fusion. In feature level fusion, features from mul-

tiple modalities are combined before feeding them to the

decision unit or a classifier, e.g., a support vector machine

Figure 1. Overview of the proposed Class Consistent Multi-Modal

(CCMM) fusion. The proposed algorithm perturbs the input fea-

tures until all the modalities predict a consistent class.

(SVM) [2]. A straight-forward way of combining the fea-

tures is to concatenate them, which has been used in bio-

metrics [33, 41, 36], object recognition [21], scene classi-

fication [34] etc. Feature concatenation preserves the raw

information so that the classifier can utilize the correlation

among modalities. However, these features are often very

high dimensional and hence simple concatenation can be

inefficient. Another approach to feature level fusion is mul-

tiple kernel learning (MKL), which learns a linear combina-

tion of multiple kernels. Finding appropriate feature combi-

nations entails designing good kernel functions among a set

of candidate kernels. MKL is a powerful way of determin-

ing the mixing weights of multiple kernels [15, 29, 38, 39].

For multi-modal fusion, each modality can be used to form a

kernel matrix; an optimal linear combination of kernel ma-

trices translates into optimal feature level fusion. When us-

ing only a linear kernel for each modality, the MKL meth-

ods are similar to feature concatenation, except that the fea-

tures from each modality are weighted based on training

accuracy. However, in order to make a good decision at test

time, it is important that we also determine the quality of

the test features from each modality. For example, from a

training database of depth and intensity images, we might

conclude that both modalities are equally useful for classifi-

cation; however, at test time, the depth image may be noisy

due to specularity on an object’s surface. In such situations,

it is useful to make the prediction based on score level or
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decision level fusion and not rely entirely on training accu-

racy. Score level fusion can be achieved by averaging the

scores of decision functions and decision level fusion can

be performed by taking a majority vote from all the modal-

ities. The predicted scores from multiple modalities can

also be combined using late fusion methods [23, 40]. Re-

cently, [37] proposed a sparse representation-based multi-

modal biometric fusion method, which represents the test

data by a sparse linear combination of training data, while

constraining the observations from different modalities of

the test subject to share their sparse representations. Ef-

fectively, they regularize the joint sparse coefficient matrix

with the ℓ{1,2} norm, which enforces the test feature to be

reconstructed from the training features of the same class.

This method is the closest to our approach in that it implic-

itly enforces that different modalities share a common class

at test time. However, [37] does not learn a classification

model, and training data for each class needs to be “paired”

for each modality. That is, the number of samples in each

modality must be the same to enforce the ℓ{1,2} constraint

on the joint sparse coefficient matrix. Furthermore, enforc-

ing row sparsity on the joint sparse coefficient matrix of a

test sample makes the method susceptible to the ordering of

the training samples within each class. Also, sparse meth-

ods are generally slow for large training matrices.

Most algorithms for feature fusion have been developed

for continuous features. Recently, with the the availability

of large datasets, the need for efficient algorithms that can

work with big data has increased. One way to efficiently

process large numbers of features is to represent them as

binary features. Binary codes are attractive representations

of data for similarity based search and retrieval purposes,

due to their storage efficiency and computational efficacy

[20, 30, 16, 32]. For example, 250 million images can be

represented by 64 bit binary codes requiring only 16 GB

of memory. Hashing is a common method to convert high

dimensional features to binary codes whose Hamming dis-

tances preserve the original feature space distances. Al-

though shorter codes are more desirable due to direct imple-

mentation in hash tables, longer binary descriptors of data

have been shown to be efficient for fast similarity search

tasks. For example, [26] proposed a multi-index hashing

method, and [31] introduced a branch and bound approach

to perform exact k-nearest neighbors search in sub-linear

time with long binary codes. To the best of our knowledge,

ours is the first work proposing multi-modal fusion using

binary codes. We propose to modify the test features so

that all the modalities agree on a common class label. We

call this approach class consistent multi-modal (CCMM)

fusion. The key idea, summarized in Fig. 1, is to minimize

the magnitude of perturbations to feature values for each

modality to reach a point where all the modalities are pre-

dicting a common class label. We develop this intuition into

an optimization problem that can be solved via quadratic

programming for continuous features, and mixed integer

programming for binary features. We evaluate this algo-

rithm on several state-of-the-art datasets and results show

that the method outperforms many previous algorithms. Al-

though the idea of perturbation has been used previously

(e.g. [35, 27]), we believe it has not been utilized for fusing

multiple modalities. The contributions of this paper are as

follows:

• We enforce class consistency across all available

modalities in a perturbation model to determine the

class of multi-modal data item.

• Based on this notion of class consistency, we develop

an efficient binary feature fusion algorithm.

2. Class Consistent Multi-Modal Fusion

(CCMM)

Our method relies on the intuition that when multiple

modalities are available, each of them should predict the

same class. When there is disagreement in the predic-

tion of a test sample, we employ a scheme that enforces

consistency of the predicted class across modalities. We

achieve this consistency by perturbing the test sample in

each modality so that their predictions are consistent. This

is formally posed as an optimization problem which min-

imizes the perturbation to satisfy the constraint that all

modalities predict the same class label. In what follows,

we establish our notation and develop the algorithm, first

for continuous features and then, for binary features.

Assume that there are M modalities each with Nm la-

beled samples where m = 1, . . . ,M . Let the data matrix

of the mth modality be denoted by Y(m) ∈ R
d×Nm , where

each column of Y(m) is a d-dimensional data sample de-

noted by y
(m)
i ∈ R

d, for i = 1, . . . , Nm. Let the class

label of the ith sample in the mth modality be denoted by

l
(m)
i ∈ {1, . . . , C}, where C is the number of classes. Note

that, for now, we regard the features as continuous; subse-

quently we adapt our method for binary features.

Let W(m) :=









w
(m)
1
...

w
(m)
C









, be the classifier matrix for all

categories in modality m, where the cth row vector w
(m)
c ∈

R
1×d denotes the parameters of a linear classifier for the cth

class, which we refer to as a classification weight vector.

These weight vectors are learned in a way that the class of

a test sample y
(m)
p can be computed as,

class of y(m)
p = argmax

c
w(m)

c y(m)
p . (1)

In our implementation we use an SVM ([10], [13]) to learn



these classification weight matrices W(m) for all modali-

ties.

First, we describe the method for two modalities and

then extend it to multiple modalities. Denote a given test

sample’s two modalities by y
(1)
p and y

(2)
p which by con-

struction belong to the same class. Our goal is to minimize

the total perturbation needed to reach the condition that the

predicted classes using SVM matrices W(1) and W(2) are

identical. This is captured in the following optimization

problem,

min
y(1),y(2)

‖y(1) − y(1)
p ‖2 + ‖y

(2) − y(2)
p ‖2

subject to, argmax
c

w(1)
c y(1) = argmax

c
w(2)

c y(2)

(2)

The optimization problem in (2) is non-smooth and non-

convex due to the argmax functions. In order to solve it

efficiently, we approximate it with a tractable convex prob-

lem. To achieve this, we employ an alternating optimization

approach. First, we assume that the class predicted by the

second modality is correct and optimize for y(1), and then,

we fix the class to the one predicted by the first modality

and optimize for y(2). When optimizing for the mth modal-

ity feature y(m), the class that is assumed to be correct is

called the target class and is denoted by tm , i.e.,

t1 := argmax
c

w(2)
c y(2)

p , (3)

and,

t2 := argmax
c

w(1)
c y(1)

p . (4)

We seek to perturb the feature y
(m)
p so that its predicted

class is tm, which can be achieved by solving the following

problem:

min
y(m)
‖y(m) − y(m)

p ‖2

subject to, argmax
c

w(m)
c y(m) = tm. (5)

As explained later, the optimization problem in (5) is a

quadratic program (QP). Let the solution of (5) be denoted

by ỹ
(m)
t . Finally, the consistent class, denoted by lp, across

both modalities is the target class of the modality that re-

quires the smallest change with respect to the original fea-

ture norm, i.e.,

lp = tm∗ , (6)

where,

m∗ = argmin
m

‖ỹ
(m)
p − y

(m)
p ‖2

‖y
(m)
p ‖2

. (7)

Next, we describe how the optimization problem in (5)

can be written as a quadratic convex program. The con-

straints in (5) can be re-written as,

argmax
c

w(m)
c y(m) = tm

⇒ w
(m)
tm

y(m) ≥ w
(m)
i y(m), ∀i 6= tm

⇒ w
(m)
i y(m) −w

(m)
tm

y(m) ≤ 0, ∀i 6= tm

⇒ Atmy(m) ≤ 0, (8)

where, AtmR
C−1×d is a constraint matrix whose rows are

computed as, [Atm ]i,: = w
(m)
i − wtm . Hence, the prob-

lem in (5) can be optimized by solving the following QP

program,

min
y(m)
‖y(m) − y(m)

p ‖2

subject to, Atmy(m) ≤ 0. (9)

2.1. CCMM for binary features

As stated earlier, binary features are very useful for

large scale classification because they require smaller stor-

age space and are efficient for classification. However, the

optimization problem in (9) has been designed for continu-

ous features. For binary features, if we predict a consistent

class by solving this problem, we may not achieve good per-

formance because the solution will not lie in a binary space.

In face recognition, for example, a binary feature may rep-

resent an image attribute like sunglasses, which could be

either present or not present in the image. Hence, we opti-

mize for the binary features over a binary space.

In this sub-section, we assume the features b
(m)
i ∈

{0, 1}d are d-dimensional binary vectors. Furthermore, data

matrices B(m) = [b
(m)
1 , . . . ,b

(m)
Nm

] ∈ {0, 1}d×Nm are of

size d × Nm with binary elements. As with continuous

features, we learn SVM weight matrices for each modality.

The major difference in setting up our optimization problem

is that, in the case of binary features, we want the solution

of the optimization problem to lie in a binary space. We

reformulate (9) for binary features as:

min
b(m)
‖b(m) − b(m)

p ‖1

subject to,

Atmb(m) ≤ 0

b(m) ∈ {0, 1}d. (10)

Note that for binary features, we minimize the ℓ1 instead of

the ℓ2 norm because the former counts the number of places

in the binary vector where the solution differs from the input

feature. In other words, we minimize the Hamming distance

between the input feature and the solution. Minimizing the

ℓ1 norm is a non-smooth function; hence, we use an auxil-



iary variable z to make the cost differentiable,

min
b(m),z

1T z

subject to,

Atmb(m) ≤ 0

z = |b(m) − b(m)
p |,

b(m) ∈ {0, 1}d, z ∈ {0, 1}d, (11)

where 1 ∈ R
d is a vector of 1’s, (.)T denotes the matrix

transpose, and |.| denotes the element-wise absolute value.

The ℓ1 constraints involving z are difficult to optimize. In

order to eliminate them, we replace them with a set of lin-

ear constraints as follows. Let the ith element of vectors z,

b(m), and b
(m)
p be denoted by zi, b

(m)
i and b

(m)
pi , respec-

tively. Next, z = |b(m) − b
(m)
p | can be replaced by the

following linear constraints,

zi ≥ (b
(m)
pi − bi) (12)

zi ≥ −(b
(m)
pi − bi). (13)

Now the optimization problem in (11) can be modified as,

min
b(m),z

d
∑

i=1

zi

subject to,

Atmb(m) ≤ 0
[

−Id +Id
−Id −Id

] [

z

b(m)

]

≤

[

b
(m)
p

−b
(m)
p

]

b(m) ∈ {0, 1}d, z ∈ {0, 1}d. (14)

The optimization in (14) is a linear programming problem

in b(m), z except for the fact that the solution space is bi-

nary. Although this problem can be solved with a mixed

integer programming (MIP) solver, we propose an efficient

greedy algorithm and, later, empirically demonstrate that

the solution to the greedy algorithm is close to that of the

MIP solver. In order to solve the problem in (14) or (10)

greedily, we first find a feasible solution, which can simply

be one of the training samples from the target class satis-

fying the constraints of problem (10). Now, starting from

this feasible solution, we move towards the test sample as

much as possible without leaving the feasible region. Let

the initial feasible solution be denoted by b0 and the run-

ning solution, which we will keep updating, be denoted by

b. First we initialize b to b0. Next, we find all the elements

of b that are different from the test sample b
(m)
p . Let this

set of bit locations be denoted by S, i.e.,

S := {i | bi 6= b
(m)
pi },

Figure 2. Example of most violated constraint. Both solutions a

and b lie in target class 2. Since a is likely to move to class 1, hy-

perplane 1 corresponds to the most violated constraint. Similarly,

if the current solution is b, hyperplane 3 corresponds to the most

violated constraint.

where bi is the ith bit of vector b and b
(m)
pi is the ith bit of

b
(m)
p . Our goal is to change as many bits from this set S as

possible because every change takes b one step closer to the

test feature b
(m)
p . Choosing the optimal subset of bits is an

NP-hard problem and, hence, we resort to an approximate

greedy method. Next, we present this greedy algorithm that

changes one bit at a time from this set S. The solution of the

greedy algorithm can further be improved by various MIP

solvers; however, empirically we observe that the greedy

solution is quite good. In order to select a bit from S we flip

all the bits in S and compute the following score,

si = min
c 6=t

(w
(m)
t b−w(m)

c bī), (15)

where bī is b with its ith bit flipped. Note that, since we

start from a feasible solution, si is bounded below by 0.

Recall that w
(m)
c is the SVM weight vector for the cth class

of the mth modality. The score si is the difference of scores

between the target class and its closest one if the ith bit is

flipped. In other words, si corresponds to the constraint

closest to the current solution b and is most likely to be vio-

lated if b’s ith bit is changed. This is illustrated in Fig. 2.

Now, our goal is to change that bit which will keep the

current solution in the feasible region as much as possible.

Hence, we change that bit of b that belongs to set S and for

which the solution remains as feasible as possible. Feasibil-

ity is measured by the maximum distance of b from all the

constraints. We denote the index of the bit to be flipped by

j, and it is computed as,

j = argmax
i

si. (16)

All the steps of the greedy algorithm are summarized in Al-

gorithm 1. Having computed the solution to the optimiza-

tion problem in (14), we can compute the consistent class lp
from both modalities based on the perturbation as follows:

lp = tm∗ , (17)



Algorithm 1: Greedy algorithm to optimize for binary fea-

ture

Input: Binary test data b
(m)
p , Classification matrices

W(m), a feasible solution b0, target class t
Output: b

Initialize b = b0, v = 1.

S ← {i | bi 6= b
(m)
pi }

while (v > 0) AND (S is not empty) do

1. bī ← b with ith bit flipped.

2. v ← maxi∈S minc 6=t(w
(m)
t b−w

(m)
c bī)

if v > 0 then

j ← argmaxi∈S minc 6=t(w
(m)
t b−w

(m)
c bī)

bj ← 1− bj
end

3. S ← {i | bi 6= b
(m)
pi }

end

return b

where,

m∗ = argmin
m

‖b̃
(m)
p − b

(m)
p ‖1

‖b
(m)
p ‖1

. (18)

However, we find in our experiments that weighting the per-

turbations based on the quality of the modalities, improves

the performance. This is explained in the next sub-section.

Finally, we summarize all the steps to compute the consis-

tent class from two modalities in Algorithm 2.

Algorithm 2: Summary of CCMM for binary features

Input: Binary test data b
(m)
p , Classification matrices

W(m), for m = 1, 2
Output: Class consistent label lp

1. Predict class labels l
(m)
p = argmaxc w

(m)
c b

(m)
p for

individual modalities.

2. Compute target labels as t1 = l
(2)
p , t2 = l

(1)
p .

3. Compute b̃
(m)
p by solving optimization problem in

(14) using greedy Algorithm 1.

4. Predict class consistent label lp using (17) or (23).

return lp

2.2. Extension to Multiple Modalities

So far we have described how to predict a consistent

class with two modalities. For multiple modalities we con-

struct a set of target labels based on the classifiers for the

individual modalities. This set, denoted by Z , consists of

the labels predicted by all the modalities. Let the number of

modalities be denoted by M . We compute the score smc of

the mth modality based on the perturbation needed to pre-

dict the cth target class as follows:

smc =
exp(−ǫmc/σ)

∑

c∈Z exp(−ǫmc/σ)
, (19)

where,

ǫmc =
‖b̃

(m)
p − b

(m)
p ‖1

‖b
(mz)
p ‖1

,

and σ is a parameter that controls the sharpness of the dis-

tribution of the scores over classes. For each class, we com-

pute the combined score as a weighted sum of each modal-

ity,

sc =

M
∑

m=1

ηm ∗ smc, (20)

where, ηm is the quality of the mth modality based on the

training data. Although, we could have given the same

weight to each modality, i.e. set ηm = 1, ∀m, setting these

weights based on training data slightly improves perfor-

mance. We compute ηm based on the kernel alignment cri-

terion [12] which has been shown to generalize well to un-

seen test data and has been used for combining multiple ker-

nels [15]. ηm is computed based on similarity between the

linear kernel matrix of the mth modality, i.e. B(m)TB(m),
and the ideal kernel matrix Kdm ∈ R

Nm×Nm , defined as,

Kdm(i, j) =

{

1, if l
(m)
i = l

(m)
j ,

0, otherwise.
(21)

The score ηm is computed as,

ηm =
〈Km,Kdm〉

√

〈Km,Km〉〈Kdm,Kdm〉
, (22)

where, Km := B(m)TB(m), and 〈., .〉 denotes the dot prod-

uct between the argument matrices. Finally, the class lp
of the test input is predicted as the one with the maximum

score,

lp = argmax
c

sc. (23)

3. Experiments

We evaluate the method on publicly available computer

vision datasets. First, we use the fusion algorithm to com-

bine image and depth data for object categorization. Next,

we apply the method to fuse multiple modalitites for bio-

metrics applications and demonstrate significant improve-

ment over previous methods. Finally, we combine inten-

sity and semantic features on the Pascal-Sentence dataset.

We compare the method to state-of-the-art multimodal fu-

sion methods such as recently proposed sparse multimodal

biometric recognition (SMBR) [37], sparse logistic regres-

sion (SLR) [19], support vector machine (SVM) [7] , and



CCMM SMBR SLR-

Sum

SLR-

Major

SVM-

Sum

SVM-

Major

MKL

Fusion

Intensity Features 70.1 64.7 64.3 64.3 70.1 70.1 68.4
Depth Features 64.9 61.1 63.6 63.6 64.9 64.9 61.8

Combined Features 83.7 73.5 73.4 71.9 79.1 74.1 77.1
Table 1. Classification Accuracy for RGB-D data

multiple kernel learning (MKL) [29] algorithms. As SLR

and SVM methods cannot handle multiple modalities, [37]

explored score-level and decision level fusion to combine

modalities. Score level fusion was achieved by adding

probability outputs of all the modalities to obtain a final

score vector. Classification was performed by choosing the

class corresponding to the maximum score. For decision

level fusion, the class predicted by the maximum number of

modalities was chosen. The score level fusion using SLR

is called SLR-Sum and the decision level fusion is called

as SLR-Major; for SVM, they are called SVM-Sum and

SVM-Major, respectively. The parameter σ is set to 0.01
for all our experiments. We implemented our algorithm in

MATLAB and used the Gurobi optimizer [17] for solving

MIP and QP problems, for binary features and continuous

features, respectively. We observed that the performance of

the Gurobi optimizer was similar to the proposed greedy al-

gorithm for biometrics application, and slightly better for

object categorization. We plot the normalized difference

between the solutions of the Gurobi and the greedy algo-

rithm in Fig. 3, for fusing two iris features. As can be seen

from this figure, the greedy algorithm’s solution is close to

that of the Gurobi for most of the test samples. Hence, we

report results using only the greedy algorithm to solve the

MIP for biometrics application, and report results using the

Gurobi optimizer initialized with the greedy solution for ob-

ject categorization. Furthermore, for classification or rank-

one recognition, we include the top 5 classes into target

class set. In the following subsections, we describe each

of the datasets and present our results.
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Figure 3. The performance of the greedy algorithm compared to

the Gurobi MIP solver. For most of the test samples, the differ-

ence is less than 0.004 which corresponds to approximately 2 bits.

That is, loosely speaking, the greedy algorithm’s solution is, on an

average, within 2 bits of the sophisticated MIP solver.

3.1. RGBD data

Recently, there has been a growing interest in using both

intensity and depth data for computer vision algorithms. For

example, with Microsoft’s Kinect camera one can capture

videos of both color as well as corresponding depth data.

The purpose of this experiment is to evaluate CCMM on

binary features computed using color and depth data. We

use the RGB-D dataset from the University of Washington

[22] which consists of 51 object categories. A few exam-

ples of pairs of color and depth images from this dataset are

shown in Fig. 4. Most of the depth images are noisy. Hence,

we apply a recursive median filter to fill in missing values.

Processed images are shown in the third row of Fig. 4.

Figure 4. Example images of the RGBD dataset. First row shows

the color images, second row displays the corresponding depth

images, and the third row is the denoised version of the second

row after applying the recursive median filter.

We test CCMM on the subset of the dataset by randomly

selecting 15 images for training from each category. For

the intensity images, we compute gradient based kernel de-

scriptors [3] on 16 × 16 patches over a dense regular grid

with spacing of 8 pixels. With these features, we compute a

dictionary of 1000 words using k-means. Using this dictio-

nary of visual words, we employed efficient match kernels

and used 1 × 1, 2 × 2, and 4 × 4 pyramid sub-regions [5]

to compute image level features. For the depth features, we

compute the shape features over point clouds as described in

[4] and gradient kernel descriptor features on the depth im-

age. Similar to intensity features, image level depth features

are computed using efficient match kernels over 1×1, 2×2,

and 4 × 4 pyramid sub-regions using a dictionary of 1000
words. Finally, image level intensity and depth features are

converted into binary features using the method proposed in

[32]. We evaluate CCMM on individual modalities as well



as their combination in Table 1. From the first two rows

of the table, we note that SLR and SMBR methods have

lower accuracy than SVM (CCMM is, of course, equiva-

lent to SVM for the single modality case since we employ

SVM as the per modality classifier). The reason for this

is that these methods do not learn any classification model

and rely on a sparse linear combination of training features

to represent the test feature. Furthermore, none of the meth-

ods take into consideration that the input features are binary.

By treating binary features in an appropriate way, CCMM

is able to significantly improve the performance using a fu-

sion of depth and intensity features, as seen in the last row

of Table 1.

3.2. WVU dataset

The WVU biometrics dataset [11] consists of multiple

biometrics such as fingerprints, iris, palmprint, hand geom-

etry and voice samples from different subjects. Following

the standard setting proposed in [37], we chose iris and fin-

gerprint for testing the method. Furthermore, the evaluation

was done on the subset of 219 subjects having samples in

both modalities. Some challenging examples of fingerprints

and iris images are shown in Fig. 6. We used the same Ga-

bor features as in [37] for fingerprints and iris images. Be-

fore computing these features a robust pre-processing was

applied to the images. Iris images were first segmented us-

ing the method proposed in [28], and then, a 25 × 240 iris

template was created using the publicly available code of

Masek et al [24]. Fingerprint images were first enhanced us-

ing filtering methods, then a core point was detected using

algorithms from [18]. Finally, Gabor features were com-

puted around the detected core point. Furthermore, to eval-

uate our algorithm on binary features, we computed the bi-

nary features of size 512 for each of the modalities using

the method from [32]. Table 2 shows the accuracy of indi-

vidual modalities. As can be seen, the performance of all

the methods is comparable when only a single modality is

considered. Next, we evaluate CCMM on various combina-

tions of modalities. Following standard settings in [37], we

compare the method on three combinations : (1) All the fin-

gerprints (2) both iris images (3) all modalities. We present

the comparison of different multi-modal fusion algorithms

in Table 3, which shows that CCMM outperforms the com-

peting algorithms despite the fact that, for individual modal-

ities, the performance of CCMM is lower than SMBR. This

demonstrates that forcing the class predictions of multiple

modalities to be consistent is useful for multi-modal fusion.

We also compare cumulative match curves (CMC) of dif-

ferent methods with multiple modality combinations in Fig.

5. The CMC is a popular tool to analyze the performance

of biometric systems [37], [8], [6]. To compute CMCs, the

target label set Z is composed of all the class labels. As can

be seen from this figure, the proposed method consistently

outperforms the compared methods.

Figure 6. Example of challenging fingerprints and iris images from

WVU dataset [11]. Many images in the dataset suffer from various

artifacts such as blur, occlusion, noise etc.

3.3. CASIA Fingerprints dataset

The CASIA Fingerprint Image Database Version 5.0 (or

CASIA-FingerprintV5) [1] contains a total of 20, 000 fin-

gerprint images from 500 subjects. Each subject contributed

a total of 40 images from 8 fingers, 4 from each hand. Each

finger was scanned 5 times and the volunteers were asked to

rotate their fingers with various levels of pressure to gener-

ate significant intra-class variations. In order to effectively

compare all the algorithms, we took the subset of the first 50
subjects. Furthermore, we randomly selected 3 training im-

ages per modality for each subject, and kept the remaining

2 for testing. The results, presented in Table 4, are the aver-

age classification accuracies over 5 random trials. For each

fingerprint, we compute the same features as for the WVU

dataset. In this experiment, we evaluate the idea of class

consistency with continuous features only. Furthermore,

we compare CCMM on three combinations of modalities:

(1) four fingerprints from the left hand, (2) four fingerprints

from the right hand, and (3) all 8 fingerprints. As can be ob-

served from Table 4, CCMM is comparable to SMBR when

4 fingers are fused, however it performs slightly better when

fusing all 8 fingers.

Figure 7. Example images of CASIA v5 dataset showing large

intra-class variation. The first four images belong to one finger

of subject 1 and the last four images are from subject 2.

3.4. PascalSentence Dataset

This dataset has two modalities - images and sentences.

The images in the dataset are collected from PASCAL VOC

2008, which is one of the most popular benchmark datasets

for object recognition and detection. For each of the 20

categories of the PASCAL 2008 challenge, 50 images are

randomly selected. Each image is annotated with 5 sen-

tences using Amazon’s Mechanical Turk. For our task we

randomly picked just one sentence for each image. These

sentences represent the semantics of the image.

Our image features, following [14], are collections of re-

sponses from a variety of detectors, image classifiers and

scene classifiers. The details of the image features can be



Finger 1 Finger 2 Finger 3 Finger 4 Iris 1 Iris 2

CCMM 67.8 86.9 69.4 89.3 60.5 61.2
SMBR 68.1 88.4 69.2 87.5 60.0 62.1
SLR 67.4 87.9 66.0 87.5 57.1 57.9

Table 2. Rank-one recognition of single modalities for WVU data

CCMM SMBR SLR-

Sum

SLR-

Major

SVM-

Sum

SVM-

Major

MKL

Fusion

4 Fingers 98.8 97.9 96.3 74.2 90.0 73.0 86.2
2 Irises 82.9 76.5 72.7 64.2 62.8 49.3 76.8

All Modalities 99.6 98.7 97.6 84.2 94.9 81.3 89.8
Table 3. Comparison of Rank-one recognition performance on WVU dataset for different combinations of modalities

50 100 150 200
70

75

80

85

90

95

100

Rank

C
u
m

u
la

ti
v
e
 R

e
c
o
g
n
it
io

n
 R

a
te

 (
%

)

 

 

CCMM
SMBR
SLR−Sum
SVM−Sum
SLR−Major
SVM−Major
MKLFusion       

50 100 150 200
40

50

60

70

80

90

100

Rank

C
u
m

u
la

ti
v
e
 R

e
c
o
g
n
it
io

n
 R

a
te

 (
%

)

 

 

CCMM
SMBR
SLR−Sum
SVM−Sum
SLR−Major
SVM−Major
MKLFusion       

50 100 150 200
75

80

85

90

95

100

Rank

C
u
m

u
la

ti
v
e
 R

e
c
o
g
n
it
io

n
 R

a
te

 (
%

)

 

 

CCMM
SMBR
SLR−Sum
SVM−Sum
SLR−Major
SVM−Major
MKLFusion       

(a) (b) (c)
Figure 5. The comparison of CMCs for different modality combinations of WVU dataset. (a) Four fingers, (b) Two Irises, and (c) All the

modalities (four fingers and two irises).

CCMM SMBR SLR-

Sum

SLR-

Major

SVM-

Sum

SVM-

Major

MKL

Fusion

Left Fingers 92.4 90.4 88.2 83.2 85.8 76.4 81.8
Right Fingers 91.8 92.2 90.0 84.6 82.2 74.6 78.8
All Fingers 97.0 96.2 95.4 87.8 92.6 83.6 91.2

Table 4. Comparison of rank-one recognition performance on multi-modal CASIA fingerprint data

CCMM SMBR SLR-

Sum

SLR-

Major

SVM-

Sum

SVM-

Major

MKL

Fusion

Intensity Features 66.2 66.2 65.4 65.4 66.2 66.2 67.2
Semantic Features 63.2 69.6 47.0 47.0 63.2 63.2 64.4
Combined Features 77.2 75.4 64.2 63.4 76.2 71.2 76.0

Table 5. Classification Accuracy for Pascal-Sentence dataset

found in [14]. The semantic features are constructed by us-

ing word-net semantic similarity with a dictionary of 1,200

words. These are followed by a quantization step that re-

duces the dimension to 20. The details of the text features

are presented in [14]. Finally, the features are converted to

binary codes using [32]. We present our result in Table 5,

which shows that CCMM works better than the competing

methods.

4. Conclusions

We described a multi-modal fusion algorithm- CCMM-

based on class consistency and demonstrated that it per-

forms significantly better than previous methods for binary

features. The main idea is to perturb the input modalities

until they predict the same class. Although CCMM used

linear classification models, the class consistent prediction

can be explored with other classification models.
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