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Hyperspectral compressive sensing(HCS) [6] is newly proposed for hyper-
spectral image(HSI) compression, which compresses image during image
acquisition. It can dramatically reduce the consumption of imaging resource
compared with traditional compression methods such as DPCM, JPEG, etc.
For HCS, how to recover the original HSI from a few measurements is a
challenging problem. However, most of the existing norm-based or prior-
based methods [2, 3] assume the sparse coefficients are independent, which
neglect the structure information of sparse coefficients. Moreover, the adapt-
ability of the regularization term(e.g. `0, `1 norm) to the unknown noise is
unsolved.

To model the distribution of sparsity in HSI and make the method adap-
tive to the unknown noise, we propose a novel matrix-based reweighted
Laplace prior by utilizing the characteristics of HSI. Then, a latent variable
Bayes model [8] is employed to learn the hyperparameters of the reweighted
Laplace prior from the measurements. This Bayes model unifies the signal
recovery, prior learning and noise estimation into a variational framework.
The learned sparsity prior can capture the underlying structure of the sparse
signal and is adaptive to the unknown noise, which improves the reconstruc-
tion accuracy.

Specifically, based on the HCS model G = AX +N, the reconstruction
is to recover the HSI X from measurements G given the random sampling
matrix A. A linear basis matrix D is often introduced to transform X into
a sparse signal Y as X = DY . Thus, we have the likelihood p(G|Y,Σn) =
MN (ADY,Σn, I), where Σn = diag(λ ). To recover X , a hierarchical reweighted
Laplace sparsity prior is proposed to model the sparsity of HSI. First, we
represent the sparse signal Y with a matrix normal distribution as
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Then, a Gamma distribution is imposed on the unknown γ as follows
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It can be proved that the proposed hierarchical prior equals to a reweighted
Laplace prior as

p(yi) ∝

∫
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(3)
To fit the specific distribution of HSI, a latent variable Bayes model is

employed to learn the sparsity prior from measurements, which is polluted
by unknown noise.

max
λ≥0,γ≥0,κ

p(λ ,γ,κ|G) = max
λ≥0,γ≥0,κ

∫
p(G|Y,λ ) p(Y |γ) p(γ|κ)dY (4)

This optimization equals to
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where Σby = Σn + ADΣyDT AT . According to Ref. [8], we further unify
signal recovery, sparsity learning and noise estimation into one framework
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This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.
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Figure 1: PSNR curves on three datasets under SNR=10db.
ρ = 0.10 ρ = 0.20 ρ = 0.30 ρ = 0.40 ρ = 0.50

OMP [7] 0.2632 0.3666 0.3453 0.2855 0.2357
StOMP [4] 0.0169 0.1720 0.2741 0.3469 0.4207
LASSO [5] 0.3526 0.5312 0.5512 0.5459 0.5289
FL [1] 0.1519 0.1780 0.1343 0.1019 0.0768
RCS [3] 0.3638 0.4132 0.3697 0.3081 0.2525
RLPHCS 0.7142 0.7819 0.8177 0.8217 0.8294

Table 1: Average SSIM on three datasets under SNR = 10db.

The learned sparsity prior can capture the underlying structure of the sparse
signal and adaptive to the unknown noise in CS procedure. Moreover, the
proposed reweighted Laplace prior can reduce the undemocratic penaliza-
tion effect of traditional Laplace prior(See Section 2.4).

We evaluate the performance of the proposed RLPHCS on three real
hyperspectral datasets, including INDIANA, URBAN and PAVIAU. Five
state-of-the-art compressive sensing methods are employed as the compar-
ison methods. The comparison results of PSNR and average SSIM scores
on three datasets under SNR = 10db are shown in Figure. ?? and Table ??.
The experimental results indicate the superiority of the proposed RLPHCS
on the reconstruction accuracy of HSI.

In this paper, we propose a novel reweighted Laplace prior based HCS
method. The learned prior depicts the underlying structured sparsity of HSI
very well and is adaptive to unknown noise. This helps the algorithm recon-
struct the HSI precisely.
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