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Abstract

Compressive sensing(CS) has been exploited for hype-
spectral image(HSI) compression in recent years. Though
it can greatly reduce the costs of computation and storage,
the reconstruction of HSI from a few linear measurements
is challenging. The underlying sparsity of HSI is crucial
to improve the reconstruction accuracy. However, the spar-
sity of HSI is unknown in reality and varied with different
noise, which makes the sparsity estimation difficult. To ad-
dress this problem, a novel reweighted Laplace prior based
hyperspectral compressive sensing method is proposed in
this study. First, the reweighted Laplace prior is proposed
to model the distribution of sparsity in HSI. Second, the la-
tent variable Bayes model is employed to learn the optimal
configuration of the reweighted Laplace prior from the mea-
surements. The model unifies signal recovery, prior learn-
ing and noise estimation into a variational framework to in-
fer the parameters automatically. The learned sparsity pri-
or can represent the underlying structure of the sparse sig-
nal very well and is adaptive to the unknown noise, which
improves the reconstruction accuracy of HSI. The experi-
mental results on three hyperspectral datasets demonstrate
the proposed method outperforms serveral state-of-the-art
hyperspectral CS methods on the reconstruction accuracy.

1. Introduction
Hyperspectral image(HSI) is a 3D data cube containing

both spectral and spatial information. It consists of a series
of 2D spatial images over many continuous spectral band-
s [3]. The spectral information makes it possible to identify
and quantify distinct material substance, which facilitates
a variety of applications of HSI, such as landform classifi-
cation [18], mineral exploration [2], etc. However, the 3D
structure of HSI increases the costs of storage, computation

∗indicates equal contributions.
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Figure 1. (a) A hyperspectral image with a marked pixel(red cube).
(b) The spectrum curve of the marked pixel. (c) The histogram of
the transformed coefficients in wavelet domain. (d) The curves of
the Laplace prior with different parameters, which is suitable to
depict the sparsity of spectrum.

and transmission, which limits the usage of HSI.
Compressive sensing(CS) is a newly proposed method

for image compression. Its theory shows that a sparse sig-
nal can be recovered with high probability from a few lin-
ear measurements [6], which makes it possible to com-
press image during the image acquisition. It can dramat-
ically reduce the consumption of imaging resource com-
pared with traditional compression methods such as DPCM,
JPEG, JPEG2000, etc. Since sparsification methods such as
transformation based methods [9, 12](e.g. wavelet trans-
form) or unmixing based methods with a redundant end-
member dictionary [10, 11, 13, 21] can transform HSI in-
to a sparse signal(see Figure 1(a)(b)(c)), a series of hyper-
spectral compressive sensing(HCS) methods have been pro-
posed [9, 12, 15, 16, 19]. For HCS, how to recover the origi-
nal HSI from a few measurements is a challenging problem.
ℓ0 norm, ℓ1 norm [20] and Laplace prior are prevalently
adopted to constrain the sparsity of HSI for reconstruction.
Recently, to reduce the undemocratic penalization of ℓ1 nor-
m on the nonzero coefficients of a sparse signal, Candes et
al. [4] proposed a reweighted ℓ1 norm which has resulted
in a state-of-the-art CS method. Chartrand et al. [5] further
extended this idea to a reweighted ℓp (0 ≤ p < 2) nor-
m based method. However, two important issues have been
neglected in those norm-based or prior-based methods when
depicting the sparsity of signal. 1) These sparse regulariza-
tion terms(e.g. ℓ0, ℓ1 norm) assume the sparse coefficients
are independent, which neglect the structure information of



sparse coefficients. 2) The adaptability of these regulariza-
tion terms to the unknown noise is unsolved.

To model the distribution of sparsity in HSI and make the
method adaptive to the unknown noise, we propose a novel
matrix-based reweighted Laplace prior by utilizing the char-
acteristics of HSI. Then, a latent variable Bayes model [25]
is employed to learn the hyperparameters of the reweighted
Laplace prior from the measurements. This Bayes model
unifies the signal recovery, prior learning and noise estima-
tion into a variational framework, where all unknown vari-
ables are inferred automatically. The learned sparsity prior
can capture the underlying structure of the sparse signal and
is adaptive to the unknown noise, which improves the re-
construction accuracy of HSI. The experimental results on
three hyperspectral datasets demonstrate that the proposed
method outperforms several state-of-the-art HCS methods
on the reconstruction accuracy of HSI.

2. The Proposed Method
We denote a 3D hyperspectral image as X ∈ Rnr×nc×nb

where nr, nc and nb represent the dimension of image
height, width and bands, respectively. For convenience, we
rearrange X into a 2D matrix X ∈ Rnb×np by reshaping the
image of each band as a row of X , np = nr × nc. In HCS,
X is linearly sampled by a Gaussian or Bernoulli random
sampling matrix A ∈ Rmb×nb (mb < nb) as

G = AX +N (1)

where G ∈ Rmb×np is the measurements of X and N ∈
Rmb×np denotes noise. The reconstruction of X is an in-
verse problem, which tries to recover X from the measure-
ments G given A. Since X is not sparse, we transform X
into a sparse signal Y by introducing a known linear basis
matrix D as X = DY . It is noticeable that the choice of
linear basis matrix D can be diverse. When D is an orthog-
onal basis, Y contains the sparse transformation coefficients
of X . Similarly, when D is a collection of endmembers or
a redundant dictionary, Y is a sparse abundance matrix or
composed of the sparse representation coefficients, respec-
tively.

Given D, the reconstruction task turns to recover the s-
parse Y from G as

Yopt = argmax
Y

p (Y |G) . (2)

In this study, noise N in Eq. (1) is assumed to obey ma-
trix normal distribution MN (0,Σn, I), where Σn controls
the noise level and I is an identity matrix. The likelihood
p(G|X,Σn) = MN (AX,Σn, I). We assume the noise
in each row of G is uncorrelated in this study, thus the co-
variance matrix Σn = diag (λ)1 is a λ-dependent diagonal

1For a vector x, diag(x) denotes a diagonal matrix with elements from
x. For a matrix X , diag(X) denotes extracting the diagonal elements
from X to form a vector.

matrix, where λ = [λ1, ..., λmb
]
T . Since X = DY , we

have the following likelihood of HCS

p (G|Y,λ) =
exp

{
−1

2 ∥ADY −G∥2Σn

}
(2π)

mbnp/2 |Σn|np/2
(3)

where ∥Q∥Σn
=

√
tr

(
QTΣ−1

n Q
)

represents a weighted
trace norm.

2.1. Reweighted Laplace Prior

Though Laplace prior [1, 14] is suitable to depict the s-
parsity of HSI as Figure 1(d) shows, it is unable to capture
the underlying structure of the sparse signal, and it puts un-
democratic penalization on nonzero coefficients of a sparse
signal. In addition, traditional Laplace prior is not conju-
gate to the Gaussian likelihood in Eq. (3). To solve these
problems, a data-driven hierarchical reweighted Laplace s-
parsity prior is proposed in this study as Figure 2 shows.

First, we represent the sparse signal Y with a matrix nor-
mal distribution as

p (Y |γ) =
exp

{
− 1

2∥Y ∥2Σy

}
(2π)

nbnp/2 |Σy|np/2
, Σy = diag (γ) , (4)

where diag(γ) denotes a diagonal matrix with the diagonal
elements from γ. γ = [γ1, ..., γnb

]
T controls the variation

of each row in Y . The smaller γ denotes the stronger spar-
sity of Y . Y = [y1, ...,ynp

] and yi ∈ Rnb is the ith column
of Y . This prior implies each column of Y obeys the zero
mean Gaussian distribution under covariance matrix Σy .

Then, a Gamma distribution is imposed on the unknown
γ as follows

p (γ|κ) =
nb∏
i=1

Gamma(1,
2

κi
) =

nb∏
i=1

κi

2
exp

(
−κiγi

2

)
(5)

where κ = [κ1, ..., κnb
]T controls the shape of the joint

Gamma distribution. It can be proved that the proposed hi-
erarchical prior in Figure 2 equals to a reweighted Laplace
prior2 for each column of Y through the following maxi-
mum a posteriori(MAP) estimation

p (yi) ∝
∫

p (yi|γ) p (γ|κ)dγ =
exp (−∥Kyi∥1)

2nb |K|−1
(6)

where we adopt a flat prior on p(κ) and omit it. In Eq. (6),
K = diag([

√
κ1, ...,

√
κnb

]T ).
The proposed hierarchical prior is a general form of

Laplace prior. When all elements of κ are identical to a
fixed scalar, the proposed prior degenerates to the tradi-
tional Laplace prior. By adjusting K, the proposed prior

2The detailed derivation can be found in the supplementary material.
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Figure 2. The hierarchical structure of the reweighted Laplace pri-
or based HCS.

can reduce the undemocratic penalization of the traditional
Laplace prior, which is similar as the reweighted ℓ1 norm in
[4] does. But the hierarchical structure guarantees the pro-
posed prior is conjugate to the likelihood in Eq. (3) which is
different with Ref. [4]. More importantly, the sparsity prior
obtained by the proposed method is more flexible to noise
by learning γ and κ, and can capture the underlying struc-
ture of the sparse signal. We will analyze these merits in
detail in Subsection 2.4.

2.2. Latent Variable Based Sparsity Learning

If the noise variable λ, the variables of sparsity prior γ
and κ are given in advance, Y can be inferred directly by
the following MAP estimation

max
Y

p (Y |G) = max
Y

p (G|Y,λ) p (Y |γ) . (7)

However, the appropriate sparsity prior of Y and noise co-
variance are both unknown in reality. In this study, a laten-
t variable Bayes model is adopted to learn the reweighted
Laplace prior and the noise covariance simultaneously from
the measurements. Those unknown variables can be learned
by the following MAP estimation

max
λ≥0,γ≥0,κ

p (λ,γ,κ|G)

= max
λ≥0,γ≥0,κ

∫
p (G|Y,λ) p (Y |γ) p (γ|κ) dY

(8)

where p(κ) and p(λ) adopt flat priors and the latent vari-
able Y is integrated out. It can be proved that Eq. (8) is
equivalent to minimizing the following cost function

L (λ,γ,κ) , −2 log p (λ,γ,κ|G)

= tr
(
n−1
np

GTΣ−1
by G

)
+ log |Σby|+

nb∑
i=1

κiγi − 2 log κi

np

(9)
where Σby = Σn + ADΣyD

TAT is termed as model co-
variance. This cost function consists of three parts from
left to right, which are data-fitting term, volume-based [24]
and hyperprior-based regularization terms. The data-fitting
term encourages the model covariance to fit the empirical
covariance of measurements. The volume-based regular-
ization term log |Σby| attempts to degenerate the volume
of high dimensional space determined by the model covari-
ance Σby . The hyperprior-based regularization term implic-
itly prevents undemocratic penalization on different sparse

coefficients of the signal which will be discussed in Sub-
section 2.3. Eq. (9) provides a tradeoff among these three
terms. Ideally, we can obtain the optimal estimation of λ, γ
and κ using Eq. (9), then recover the unknown Y with λ, γ
and κ using Eq. (7).

However, it is difficult to estimate λ, γ and κ from the
nonconvex optimization in Eq. (9). Instead of optimizing
nonconvex L (λ,γ,κ) with the assist of MAP estimation
to reconstruct the sparse signal Y as Eq. (7), we transform
the cost function into an equivalent regularized regression
formula, which is more intuitive as Ref. [16, 15] do in HCS.
According to Ref. [25, 26], the data-fitting term equals to a
minimization problem over Y as

tr
(
n−1
np

GTΣ−1
by G

)
= min

Y

∥∥∥∥ADY − G
√
np

∥∥∥∥2
Σn

+ ∥Y ∥2Σy
.

(10)
Then, the transformed cost function L (Y,λ,γ,κ) is given
as

L (Y,λ,γ,κ) =

∥∥∥∥ADY − G
√
np

∥∥∥∥2
Σn

+ ∥Y ∥2Σy

+ log |Σby|+
1

np

nb∑
i=1

(κiγi − 2 log κi)

(11)

which is the upper bound of L (λ,γ,κ). It can be
proved that the solution over (λ,γ,κ) of minimizing
L (Y,λ,γ,κ) as Eq. (12) is equivalent to the solution of
minimizing L (λ,γ,κ) as [24]. In Eq. (12), we unify sig-
nal recovery, sparsity learning and noise estimation into one
framework.

min
Y,λ≥0,γ≥0,κ

L (Y,λ,γ,κ) (12)

2.3. Optimization Procedure

The proposed model involves multiple variables and is
hard to be minimized directly. The alternative minimiza-
tion scheme, which reduces the original problem into sever-
al simpler subproblems, is adopted in this study. We address
the optimization of each variable alternately.

(1) Sparse Signal Recovery: Optimizing for Y . In this
subproblem, we fix λ, γ and κ, optimizing Y by

min
Y

∥∥∥∥ADY − G
√
np

∥∥∥∥2
Σn

+ ∥Y ∥2Σy
. (13)

The closed-form solution for Y is given as

Y new = ΣyD
TATΣ−1

by

G
√
np

. (14)

(2) Sparsity Learning : Optimizing for γ. Given Y , λ
and κ, the sub-problem over γ is derived as

min
γ≥0

∥Y ∥2Σy
+ log |Σby|+

nb∑
i=1

κiγi − 2 log κi

np
. (15)



To solve this nonconvex optimization problem, a concave
conjugate function is introduced to find an upper bound for
log |Σby| to relax Eq. (15) to a convex optimization. γ can
be estimated2 as

z = diag
(
Σy − ΣyD

TATΣ−1
by ADΣy

)
γnew
i =

√
4κinp (ȳ2i + zi) + n2

p − np

2κi

(16)

where ȳ = [ȳ1, ..., ȳnb
]
T

= diag
(
Y Y T

)
and z =

[z1, ..., znb
]
T is an intermediate variable.

(3) Noise Estimation: Optimizing for λ. With the re-
covered sparse signal Y and prior parameter γ, we have the
following sub-problem over λ

min
λ≥0

∥∥∥∥ADY − G
√
np

∥∥∥∥2
Σn

+ log |Σby| . (17)

Similar to the optimization of γ, a concave conjugate func-
tion is utilized to yield a closed-form solution2 as

α = diag
(
Σ−1

by

)
, λnew

i =

√
q̄2i
αi

(18)

where α = [α1, ..., αmb
], q = [q̄1, ..., q̄mb

]T =
diag

(
QQT

)
and Q = ADY −G/

√
np.

(4) Hyperparameter Estimation: Optimizing for κ.
Given the learned γ, we derive the sub-problem over κ as

min
κ

nb∑
i=1

(κiγi − 2 log κi) (19)

which results in a closed-form solution for κ as

κnew
i =

2

γi
. (20)

The whole optimization procedure is summarized in Al-
gorithm 1. Since the alternative minimization scheme de-
creases the objective function in each iteration and the ob-
jective function is proved to be bounded from below, the
optimization converges as Ref. [25, 26].

2.4. Benefits of Sparsity Learning

In this section, we will discuss the benefits of the learned
reweighted Laplace prior. It is clear that the unified opti-
mization framework in Eq. (12) equals to a standard regu-
larized regression model over sparse Y as

min
Y

(ADY − G
√
np

)TΣ−1
n (ADY − G

√
np

) + g(Y ),

g(Y ) = min
γ≥0,κ

∥Y ∥2Σy
+ log

∣∣Σn +ADΣyD
TAT

∣∣
+

nb∑
i=1

κiγi − 2 log κi

np

(21)

Algorithm 1: Reweighted Laplace Prior based Hyper-
spectral Compressive Sensing(RLPHCS)

Input: Random measurement matrix A, linear basis
matrix D, linear measurement G.

Initialize: Noise level λ = 1mb
, signal variance

γ = 1nb
, hyperparameter κ = 1nb

.
while Stopping criteria is not satisfied do

1. Update the intermediate variable
Σby = Σn +ADΣyD

TAT ;
2. Update the weighted sparse signal Y by

Eq. (14);
3. Update the signal variance γ by Eq. (16);
4. Update the noise level λ by Eq. (18);
5. Update the hyperparameter κ by Eq. (20);

Postprocessing: Compensate the sparse signal by
Yrec =

√
npY ;

Output: Reconstructed HSI Xrec = DYrec.

where g(Y ) is a penalty function. It can be proved as
Ref. [25] that this standard regularized regression model
amounts to a Bayes MAP estimation with an implicit pri-
or p̄(Y ) = exp{− 1

2g(Y )} and likelihood in Eq. (3). S-
ince log

∣∣Σn +ADΣyD
TAT

∣∣ makes γ coupled with the
noise variance λ, sampling matrix A and linear basis matrix
D, g(Y ) is non-separable, viz., there is no such function g
which satisfies g(Y ) =

∑
i g(Yi.), where Yi. is the ith row

of Y . This non-separable penalty function corresponds to a
nonfactorial implicit prior p̄(Y ). It implies all rows of Y are
dependent under an implicit structure. Therefore, the spar-
sity learning guarantees the reweighted Laplace prior can
capture the underlying structure of the sparse Y . On the
contrary, for each column of Y , the commonly used ℓ0 or ℓl
norm can be formulated as the summation of the constraint
on each element Yij , which implies the structure of Y (i.e.
the relation among different rows) is ignored for HCS.

In addition, in terms of Eq. (16), we can intuitively find
that γ is adaptively regulated with the estimated noise level
λ, which is included in Σby . It implies the learned sparsity
can adaptively regulate its configuration based on the un-
known noise. Since the element with a large magnitude in
Y corresponds to a large γi, these elements are divided by
a large γi in the reweighted Laplace prior according to E-
q. (6) and κ updated in Eq. (20) to reduce the undemocratic
penalization effect on elements of Y .

3. Experimental Results and Analysis

3.1. Experimental Setup

Data sets: In this study, three datasets are utilized to e-
valuate the performance of the proposed method, named as
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Figure 3. The PSNR curves and SAM bar charts of different methods on three datasets under SNR=10db. (a)(b)(c) PNSR curves. (d)(e)(f)
SAM bar charts.
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Figure 4. The PSNR curves and SAM bar charts of different methods on three datasets under SNR=20db. (a)(b)(c) PNSR curves. (d)(e)(f)
SAM bar charts.

INDIANA3, URBAN4 and PAVIAU5. After removing the
noisy and water absorption bands from each data, the re-
sulted INDIANA data is of 145×145 pixels and 169 bands,
the URBAN data is of 307× 307 pixels and 163 bands, and
the resulted PAVIAU data is of 610 × 340 pixels and 103
bands. In the following experiments, we crop a subimage of
200 × 200 pixels from each band of URBAN and PAVIAU
as the test data. The INDIANA data is employed directly.

Comparison methods: We compare the proposed
method with 5 state-of-the-art methods. They are Or-
thogonal Matching Pursuit(OMP) [22], Stagewise Orthog-
onal Matching Pursuit(StOMP) [7], LASSO [8], Fast
Laplace(FL) [1] and Reweighted ℓ1 norm based Compres-
sive Sensing(RCS) [4]. These traditional CS methods are
extended to HCS by reconstructing each spectrum of H-
SI. In this paper, orthogonal transformation based method
is used to transform HSI into a sparse signal. Due to the
limitation on page length, comparison results with unmix-
ing based HCS methods can be found in the supplementary
material.

Parameter setup: For all experiments, the 3D HSI is
converted into a 2D matrix X by vectorizing the image
of each band as a row of X . A Gaussian random sam-
pling matrix is adopted as A for all methods. For the pro-
posed method, the maximum iteration number NIt and the
minimum update difference η = ∥Y new − Y ∥2 / ∥Y ∥2 are
the only two parameters which need to be manually tuned
for terminating the algorithm. We set NIt = 400 and
η = 10−4. For the comparison methods, all parameters in-
volved are optimally assigned as described in the reference
papers.

3http://cobweb.ecn.purdue.edu/ biehl/MultiSpec/
4http://www.tec.army.mil/Hypercube
5http://www.ehu.es/ccwintco/index.php/Hyperspectral Remote
Sensing Scenes

Evaluation measures: Peak signal-to-noise ra-
tio(PSNR) [17], structure similarity(SSIM) [23] and
spectral angle mapper(SAM) [17] are adopted as the
evaluation measures. PSNR and SSIM measure the
average similarity and structure consistency between the
reconstructed image and the reference image, respectively,
while SAM calculates the average angles between spectrum
vectors from the reconstructed image and the reference
image at each pixel. Therefore, larger PSNR, SSIM and
smaller SAM denote higher reconstruction accuracy.

3.2. Performance Evaluation on Orthogonal Trans
formation Based HCS

In this section, Haar wavelet is chosen to form the linear
basis matrix D , with which X can be transformed into a
sparse signal Y . We compress all data by the random sam-
pling matrix A with sampling rate ρ ranging from 0.1 to 0.5.
The sampling rate ρ denotes the volume proportion between
measurements G and original data X . To simulate the ran-
dom noise in CS, we put three levels of additive Gaussian
white noise into the measurements, which results in the sig-
nal noise ratio(SNR) of measurements to be 10db, 20db and
30db, respectively. OMP, StOMP, LASSO, FL and RCS are
implemented as the comparison methods. Given the mea-
surements G and random sampling matrix A, we recover
the sparse signal Ŷ by all competing methods. Then HSI
is reconstructed as X̂ = DŶ with the Haar wavelet basis
matrix D. After 10 Monte-Carlo runs of reconstruction, we
obtain the following average evaluation measures.

Under three levels of noise, the average PSNR curves
versus sampling rate of different methods on three datasets
are shown in Figure 3(a)(b)(c), Figure 4(a)(b)(c) and Fig-
ure 5(a)(b)(c). It is clear that the proposed RLPHCS out-
performs all other HCS methods on each dataset dramati-
cally. For example, when SNR of measurements is 10db,



Table 1. The SSIM scores of different methods on three datasets under SNR = 10db.
Results on INDIANA dataset

ρ = 0.10 ρ = 0.15 ρ = 0.20 ρ = 0.25 ρ = 0.30 ρ = 0.35 ρ = 0.40 ρ = 0.45 ρ = 0.50
OMP [22] 0.1695 0.2127 0.2068 0.2218 0.2055 0.1854 0.1596 0.1436 0.1279
StOMP [7] 0.0329 0.158 0.1410 0.1995 0.2371 0.2893 0.3661 0.4162 0.4251
LASSO [8] 0.3267 0.4583 0.4311 0.4365 0.4394 0.4331 0.4348 0.4234 0.4064
FL [1] 0.0605 0.0652 0.0609 0.0616 0.0476 0.0440 0.0374 0.0313 0.0288
RCS [4] 0.2351 0.2805 0.2616 0.2545 0.2337 0.2063 0.1779 0.1567 0.1386
RLPHCS 0.5752 0.6216 0.6415 0.7016 0.7195 0.7243 0.7272 0.7338 0.7368

Results on URBAN dataset
ρ = 0.10 ρ = 0.15 ρ = 0.20 ρ = 0.25 ρ = 0.30 ρ = 0.35 ρ = 0.40 ρ = 0.45 ρ = 0.50

OMP [22] 0.2866 0.4806 0.4208 0.4281 0.4206 0.3969 0.3629 0.3275 0.3028
StOMP [7] 0.0117 0.0787 0.1742 0.2055 0.3184 0.3589 0.3627 0.4113 0.4206
LASSO [8] 0.4589 0.4798 0.5528 0.5802 0.6318 0.6076 0.5993 0.6074 0.6080
FL [1] 0.2253 0.2249 0.2363 0.1969 0.1772 0.1618 0.1403 0.1112 0.1014
RCS [4] 0.3851 0.5147 0.4901 0.4817 0.4488 0.4247 0.3813 0.3523 0.3219
RLPHCS 0.7478 0.8042 0.8449 0.8578 0.8627 0.873 0.8657 0.8722 0.8728

Results on PAVIAU dataset
ρ = 0.10 ρ = 0.15 ρ = 0.20 ρ = 0.25 ρ = 0.30 ρ = 0.35 ρ = 0.40 ρ = 0.45 ρ = 0.50

OMP [22] 0.3336 0.4711 0.4721 0.4361 0.4097 0.3690 0.3340 0.3010 0.2764
StOMP [7] 0.006 0.0462 0.2007 0.0965 0.2667 0.2483 0.3120 0.367 0.4165
LASSO [8] 0.2722 0.4524 0.6098 0.5647 0.5824 0.5779 0.6037 0.5692 0.5716
FL [1] 0.1699 0.2783 0.2369 0.2108 0.1781 0.1355 0.1280 0.1062 0.1001
RCS [4] 0.4711 0.4905 0.4880 0.4732 0.4265 0.3971 0.3650 0.3278 0.2971
RLPHCS 0.8196 0.8282 0.8594 0.8651 0.8709 0.8733 0.8721 0.8762 0.8787

Table 2. The SSIM scores of different methods on three datasets under SNR = 20db.
Results on INDIANA dataset

ρ = 0.10 ρ = 0.15 ρ = 0.20 ρ = 0.25 ρ = 0.30 ρ = 0.35 ρ = 0.40 ρ = 0.45 ρ = 0.50
OMP [22] 0.2413 0.4355 0.5296 0.5424 0.5627 0.5944 0.5923 0.5588 0.5576
StOMP [7] 0.1777 0.2026 0.3412 0.5553 0.5888 0.6546 0.682 0.7397 0.7213
LASSO [8] 0.4617 0.6908 0.763 0.7693 0.8025 0.8043 0.8234 0.8289 0.8313
FL [1] 0.196 0.2762 0.3137 0.2122 0.2459 0.2146 0.2314 0.233 0.2482
RCS [4] 0.3509 0.5209 0.5948 0.5996 0.5993 0.5927 0.5711 0.5377 0.5139
RLPHCS 0.8109 0.827 0.8503 0.8589 0.8644 0.8774 0.883 0.8898 0.8934

Results on URBAN dataset
ρ = 0.10 ρ = 0.15 ρ = 0.20 ρ = 0.25 ρ = 0.30 ρ = 0.35 ρ = 0.40 ρ = 0.45 ρ = 0.50

OMP [22] 0.4984 0.7759 0.7614 0.7842 0.7986 0.7919 0.7795 0.7632 0.745
StOMP [7] 0.0177 0.0662 0.3587 0.5053 0.6652 0.7434 0.7700 0.7743 0.8483
LASSO [8] 0.7081 0.8320 0.8309 0.871 0.8859 0.8794 0.8938 0.8862 0.9011
FL [1] 0.5818 0.5841 0.6186 0.5762 0.5629 0.5474 0.5210 0.5091 0.5017
RCS [4] 0.6639 0.8285 0.8203 0.8244 0.821 0.8057 0.7847 0.7626 0.7418
RLPHCS 0.8822 0.9064 0.9362 0.9452 0.9444 0.9528 0.9567 0.9603 0.9605

Results on PAVIAU dataset
ρ = 0.10 ρ = 0.15 ρ = 0.20 ρ = 0.25 ρ = 0.30 ρ = 0.35 ρ = 0.40 ρ = 0.45 ρ = 0.50

OMP [22] 0.4539 0.7546 0.8091 0.8286 0.8202 0.8116 0.7935 0.7779 0.7538
StOMP [7] 0.0354 0.0769 0.5133 0.5605 0.6077 0.8043 0.8214 0.8158 0.8166
LASSO [8] 0.6334 0.7694 0.8686 0.8444 0.8748 0.8728 0.8962 0.8969 0.8940
FL [1] 0.6371 0.6929 0.6375 0.6396 0.5744 0.5907 0.5250 0.5190 0.5148
RCS [4] 0.7117 0.8118 0.8580 0.8373 0.8259 0.8065 0.7866 0.7595 0.731
RLPHCS 0.9179 0.9363 0.9481 0.9515 0.9519 0.9542 0.9548 0.9564 0.9568

Table 3. The SSIM scores of different methods on three datasets under SNR = 30db.
Results on INDIANA dataset

ρ = 0.10 ρ = 0.15 ρ = 0.20 ρ = 0.25 ρ = 0.30 ρ = 0.35 ρ = 0.40 ρ = 0.45 ρ = 0.50
OMP [22] 0.2721 0.4199 0.6582 0.7201 0.7593 0.7579 0.8201 0.8209 0.8474
StOMP [7] 0.1237 0.2116 0.5299 0.6159 0.6698 0.6869 0.7293 0.7475 0.7989
LASSO [8] 0.7045 0.7705 0.7473 0.8478 0.8676 0.8771 0.8881 0.8995 0.8984
FL [1] 0.1571 0.2698 0.3248 0.4799 0.4793 0.4976 0.5726 0.5520 0.4794
RCS [4] 0.4766 0.6129 0.7306 0.7761 0.7896 0.7897 0.8222 0.8252 0.8271
RLPHCS 0.6805 0.8800 0.9123 0.9298 0.9356 0.9307 0.9445 0.9494 0.9551

Results on URBAN dataset
ρ = 0.10 ρ = 0.15 ρ = 0.20 ρ = 0.25 ρ = 0.30 ρ = 0.35 ρ = 0.40 ρ = 0.45 ρ = 0.50

OMP [22] 0.6827 0.7992 0.8998 0.9106 0.9239 0.9516 0.9565 0.9511 0.9617
StOMP [7] 0.0660 0.0385 0.4117 0.5409 0.8068 0.8664 0.8292 0.8929 0.8726
LASSO [8] 0.7010 0.8382 0.8587 0.8912 0.8943 0.9030 0.9185 0.9113 0.9062
FL [1] 0.7500 0.726 0.7169 0.8299 0.8093 0.8312 0.8436 0.8331 0.8490
RCS [4] 0.7328 0.8945 0.9258 0.9396 0.9499 0.9481 0.9503 0.9526 0.9469
RLPHCS 0.9063 0.9501 0.9701 0.9765 0.9825 0.9854 0.9869 0.9883 0.9885

Results on PAVIAU dataset
ρ = 0.10 ρ = 0.15 ρ = 0.20 ρ = 0.25 ρ = 0.30 ρ = 0.35 ρ = 0.40 ρ = 0.45 ρ = 0.50

OMP [22] 0.6897 0.8627 0.9328 0.9467 0.956 0.9597 0.9632 0.9657 0.9653
StOMP [7] 0.0056 0.0780 0.3543 0.6096 0.8212 0.8467 0.8872 0.9089 0.9270
LASSO [8] 0.7630 0.8606 0.8822 0.8959 0.8961 0.9223 0.9037 0.9115 0.9063
FL [1] 0.4177 0.7570 0.8383 0.8500 0.8788 0.8791 0.8586 0.8702 0.8794
RCS [4] 0.7870 0.9105 0.9433 0.9549 0.9592 0.9583 0.9562 0.9521 0.9480
RLPHCS 0.9302 0.9652 0.9781 0.9809 0.9825 0.9839 0.9847 0.9848 0.9848
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Figure 5. The PSNR curves and SAM bar charts of different methods on three datasets under SNR=30db. (a)(b)(c) PNSR curves. (d)(e)(f)
SAM bar charts.

RLPHCS exceeds other competing methods on PSNR at
least 1.9db on INDANA data, 3.3db on URBAN data and
4.9db on PAVIAU data, respectively.

The bar charts of SAM values under three different lev-
els of noise on three datasets are given in Figure 3(d)(e)(f),
Figure 4(d)(e)(f) and Figure 5(d)(e)(f), respectively. Under
each noise level, the SAM values of RLPHCS are almost s-
maller than all other methods on each dataset. For example,
when SNR of measurements is 20db and 30db, SAM val-
ues of RLPHCS are smaller than 10 degree on the PAVIAU
dataset when the sampling rate is larger than 0.1.

The comparison results of SSIM under three levels of
noise on three datasets are shown in Table 1, Table 2 and
Table 3, respectively. It can be seen that RLPHCS has the
highest SSIM scores among all methods. Specifically, when
SNR of measurements is 20db, the SSIM scores of the pro-
posed RLPHCS are larger than 0.9 on PAVIAU data when
the sampling rate ρ ≥ 0.1. The visual reconstruction re-
sults with the sampling rate ρ = 0.2 on the measurements
of SNR =20db are shown in Figure 6, where the proposed
RLPHCS also yields the most approximate results to the o-
riginal bands visually.

The results evaluated by three measures indicate that the
proposed RLPHCS outperforms other methods on the re-
construction accuracy of HSI under different levels of noise.
When SNR is lower, the advantage of the proposed method
is more obvious. This is because RLPHCS can capture the
underlying structure of the sparse signal and regulate the
configuration of the sparsity prior adaptively to cope with
the unknown noise.

4. Conclusions

In this study, we propose a novel reweighted Laplace
prior based HCS method, where the configuration of the
reweighted Laplace prior is learned by a latent variable
Bayes model. The learned prior depicts the underlying
structured sparsity of HSI very well and is adaptive to the
unknown noise. This helps the algorithm reconstruct the H-
SI precisely. Moreover, the signal recovery, prior learning
and noise estimation are integrated into a unified variational
framework where all unknown variables are inferred auto-
matically. In the end, plenty experimental results illustrate
the superiority of the proposed method over several state-

of-the-art HCS methods on the reconstruction accuracy.
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