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Recent work in HCI has demonstrated a variety of potential applications for
depth sensors on mobile devices (gesture interfaces [2]; deictic references
in augmented reality [3]), and several such sensors are in production. How-
ever, the relatively high power consumption of current depth sensors even at
relatively low resolutions presents major difficulties in making these appli-
cations practical. Besides that, further improving the resolution of current
depth sensors has high cost, while high resolution RGB images are compar-
atively cheap.

This paper describes methods to reconstruct high-resolution depth mea-
surements accurately from sparse scattered samples, see Figure 1. We pro-
pose to exploit image (resp. video) data obtained at the same time as the
depth samples to produce a spatial model that governs our smoothing of
depth samples.

Contributions: 1) We demonstrate methods that can produce good
depth from aggressive subsampling (for example, one depth sample per
4096 pixels) on both images and videos, outperforming recent strong meth-
ods and pushing forward upscale ratio. 2) Our experimental work is con-
ducted on three different widely used publicly available datasets, and one
novel dataset that we collected, and previous methods only work on limited
data. 3) Our depths with big upscale ratio are successfully used by appli-
cations such as hand trackers, while other methods have problems. 4) Even
though our methods are primarily aimed at improving either resolution or
power use of active depth sensors by upsampling sensed depth maps, our
spatial model is powerful that it can be used to improve the results of exist-
ing depth-from-image methods.

The segmenter of [1] is a form of agglomerative cluster, and so produces
a tree of region merges. Each image segmentation is a choice of the region
merges in the segmentation tree. We have depth samples, which is useful
in identifying segmentations, so we use depth samples to guide the process
of region merging. For each image, we first build the segmentation tree
with fixed number of levels and minimum area sizes for each dataset. Then,
we start with the level that contains the largest segments, and recursively
for each segment use a consistency function Cs(ci,c j) to decide whether go
down to the next level of the segmentation tree.

Cs(ci,c j) =

{
µ(e− eγ(ci,c j ;δ )) ci, c j share a segment
eγ(ci,c j ;δ ) otherwise

.

Now we have a set of image segments, and a collection of depth samples.
For each segment, we will smooth the samples inside the segment to form
a dense depth map. By using only the samples inside the segment, we can
obtain sharp depth boundaries at image segment boundaries. Once each
segment has a depth map, we compute an overall depth map by copying the
depths from each segment to the image plane. Our simple depth smoothing
algorithm is a form of scattered data interpolation. Our advanced depth
smoothing algorithm allows some large derivatives of depth. Here is a brief
description of the advanced depth smoothing.

Two basis functions are used in the advanced depth smoothing. φ(x;ci)=
f (||x− ci ||) is the radial basis function centered at ci. and f (u) = max(1−

u
dmax ,0)2 .

β (x;ci) =
φ(x;ci)

∑ j φ(x;c j)

ψ(x;ci,ui) = φ(x;ci)(u · (x− ci))

Our smoothed depth model becomes

z(x;a,b,u) =

(
∑

i
aiβ (x;ci)

)
+

(
∑

i
biψ(x;ci,ui)

)
+ zπ (x).

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.
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Figure 1: We describe a method to reconstruct high resolution depth maps from
aggressively subsampled data, using a smoothing method that exploits image segment
information to preserve depth boundaries. Our method is evaluated on four different
datasets, and produces state of art results. This example shows a case where there is
one depth sample per 24 × 24 block of image pixels (the tiny inset shows the depth
map on the same scale as the image). Our method can exploit optic flow and space-
time segmentation to produce improved reconstructions for video data.

The parameters are chosen by optimization over three energy terms, and
the weights are chosen by cross-validation.

E1(a,b,u) = ∑
j

(
z(c j;a,b,u)− zs(c j)

)2

E2(a,b,u) = ||b ||1

E3(a,b,u) = ∑
k

∑
ci,c j∈N (xk)

(
aiφ(xk;ci)+biψ(xk;ci,ui)
−a jφ(xk;c j)−b jψ(xk;c j,u j)

)2

,

argmin
a,b,u λ1E1 +λ2E2 +λ3E3

Our method also applies to video data with some modifications. We use
space time segments, because we expect depth to be fairly smooth within
a space time segment, but change on its boundaries. We reconstruct from
depth samples that are time-stamped. First, consider points nearby in space.
We expect the depth at these points to be similar. But temporal smoothing
is somewhat different. At each depth sample, we can compute optic flow,
which is used to predicts the location ci(ti,T ) of the sample forward and
backward in time. For some time interval, we can trust these flow-based
predictions, so we transport depth samples along the flow direction before
interpolation. We allow the sample to have influence for times up to δ t in
the future and −δ t in the past, and the weighting ω(∆t;δ t,C) of a sample
decline as the inter-frame time interval increases.

ω(∆t;δ t,C) =
min(− log(|∆t|)/δ t,C)

C

ci(ti,T ) = ci(ti,T −∆t)+
∆t

∑
td=1

v(ci(ti,T − td)).

∑
i

[(
aiβ (x;ci(ti,T ))+

biψ(x;ci(ti,T ),ui)

)
ω(T − ti;δ t,C)

]
+ zπ (x).

Our method yields state of the art results compared to strong recent methods
in both image depth super resolution and video depth super resolution, and
the simple smoothing version could be applied to real time system.

[1] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient graph-
based image segmentation. IJCV, 2004, 59(2):167–181.

[2] B. Jones, R. Sodhi, D. Forsyth, B. Bailey, and G. Maciocci. Around
device interaction for multiscale navigation. In MobileHCI, 2012.

[3] R. Sodhi, B. Jones, D. Forsyth, B. Bailey, and G. Macciocci. Bethere:
3d mobile collaboration with spatial input. In SIGCHI, 2013.

http://www.cv-foundation.org/openaccess/CVPR2015.py
http://www.cv-foundation.org/openaccess/CVPR2015.py

