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Abstract

We describe a method to produce detailed high resolu-
tion depth maps from aggressively subsampled depth mea-
surements. Our method fully uses the relationship between
image segmentation boundaries and depth boundaries. It
uses an image combined with a low resolution depth map.
1) The image is segmented with the guidance of sparse
depth samples. 2) Each segment has its depth field re-
constructed independently using a novel smoothing method.
3) For videos, time-stamped samples from near frames are
incorporated. The paper shows reconstruction results of
super resolution from x4 to x100, while previous methods
mainly work on x2 to x16. The method is tested on four
different datasets and six video sequences, covering quite
different regimes, and it outperforms recent state of the art
methods quantitatively and qualitatively. We also demon-
strate that depth maps produced by our method can be used
by applications such as hand trackers, while depth maps
from other methods have problems.

1. Introduction

Recent work in HCT has demonstrated a variety of poten-
tial applications for depth sensors on mobile devices (ges-
ture interfaces [15]; deictic references in augmented real-
ity [30]), and several such sensors are in production. How-
ever, the relatively high power consumption of current depth
sensors even at relatively low resolutions presents major
difficulties in making these applications practical. Besides
that, further improving the resolution of current depth sen-
sors has high cost, while high resolution RGB images are
comparatively cheap.

Therefore, there are two compelling reasons to recon-
struct high resolution depth from low resolution samples.
First, it could allow current sensors to be operated at lower
power consumption, and thus make it practical to use them
on mobile devices. Second, it could also provide resolution
that current sensor systems cannot. It is cheap in money and
in power to obtain high resolution image frames registered
to the depth sensor, so it is natural to combine upsampling
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with image or video information.

This paper describes methods to reconstruct high-
resolution depth measurements accurately from sparse scat-
tered samples, see Figure 1. We propose to exploit im-
age (resp. video) data obtained at the same time as the
depth samples to produce a spatial model that governs our
smoothing of depth samples. Our method segments an im-
age with the guidance of sparse depth samples, then uses
novel smoothing methods to reconstruct depth within each
segment. For video, we use space-time segments and optic
flow methods to move time-stamped samples in space.

We believe that experimental work on depth super res-
olution has not, to date, explored very aggressive subsam-
pling regimes because authors have focused on improving
quite good sensors. Typically, previous works explores x 2
to X8 times super-resolution, with x2 super resolution be-
ing most common for Kinect depth. In contrast, we greatly
push forward the upscale ratio and demonstrate high accu-
racy in ranges from x12 to x64 times super resolution.

Our reconstruction outperforms state of the art methods
because it respects important structural cues: 1) within ob-
ject boundaries (or an area of an object), surfaces are rea-
sonably smooth; 2) image boundaries are a fair approxima-
tion to object (object area) boundaries , meaning that one
should not smooth over image segment boundaries (over-
segmentation is not likely to create problems because ob-
tained depth will ”smooth” over boundaries); 3) space-time
segmentation of video produces boundaries that behave like
object boundaries and object area boundaries, and therefore
methods for reconstruction from static images can be ex-
tended to reconstruct motion sequences with adjustments.

Contributions: 1) We demonstrate methods that can
produce near ground truth depth from aggressive subsam-
pling (for example, one depth sample per 4096 pixels) on
both images and videos, outperforming recent strong meth-
ods and pushing forward upscale ratio. 2) Our experimen-
tal work is conducted on three different widely used pub-
licly available datasets, and one novel dataset that we col-
lected, and previous methods only work on limited data.
3) Our depths with big upscale ratio are successfully used
by applications such as hand trackers, while other methods
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Figure 1. We describe a method to reconstruct high resolution depth maps from aggressively subsampled data, using a smoothing method
that exploits image segment information to preserve depth boundaries. Our method is evaluated on four different datasets, and produces
state of art results. This example shows a case where there is one depth sample per 24 X 24 block of image pixels (the tiny inset shows
the depth map on the same scale as the image). Our method can exploit optic flow and space-time segmentation to produce improved

reconstructions for video data.
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Figure 2. Our method first segments the high resolution image, then reconstructs a high resolution depth map for each segment indepen-
dently using smoothing methods; finally, these reconstructions are composed.

have problems. 4) Even though our methods are primarily
aimed at improving either resolution or power use of active
depth sensors by upsampling sensed depth maps, our spatial
model is powerful that it can be used to improve the results
of existing depth-from-image methods.

2. Related Work

There is a body of work on depth super-resolution meth-
ods, exploiting a variety of different approaches.

Markov random field methods can be used to infer high
resolution depth from low resolution depth and high reso-
lution intensity images, because the intensity images offer
cues to the location of depth discontinuities. Depth map re-
finement based on MRF was first explored in [3], extended
in [21] with a depth specific data term, and combined with
depth from passive stereo in [34]. Park et al. [26]add a non-
local means term to their MRF formulation to preserve local
structure better and to remove outlliers. Aodha et al. [22]
treat depth super-resolution as an MRF labeling problem.

Multiple depth maps can be combined to produce a
higher resolution depth map. The Lidarboost approach of
Schuon et al. [29] combines depth maps acquired from
slightly different viewpoints. The Kinect fusion approach
of Izadi et al. [14] produces outstanding results by fusing a
sequence of depth maps generated by a tracked Kinect cam-
era into a single 3D representation in real-time. Gudmunds-
son et al . [9] presented a method for stereo and Time of
Flight (ToF) depth map fusion in a dynamic programming
approach.

Dictionary methods exploit the dependency between
sparse representations of intensity and depth signals over
appropriate dictionaries. Mahmoudi et al. [23] first learn
a depth dictionary from noisy samples, then refine and de-
noise these samples and finally learn an additional dictio-
nary from the denoised samples to inpaint, denoise, and
super-resolve projected depth maps from 3D models. [7]
and [31] independently learn dictionaries of depth and in-
tensity samples, and model a coupling of the two signal
types during the reconstruction phase. In [18], a joint inten-
sity and depth map model is built to recover the co-structure
of image and depth.

RGBD image depth refinement methods exploit image
shading to improve raw Kinect depth [33, 10]. Such meth-
ods estimate the lighting first, and then use shading informa-
tion to refine the depth map from Kinect output. Complex
spatial albedo maps and complex surface material proper-
ties present some difficulties for these methods.

Some other methods include [20][12][6] investigates the
relationship between images and depth, and no training data
is needed. Space does not allow a reasonable review of im-
age segmentation or of optic flow. We use the method of
[5] because it is stable, easy to implement and runs fast. For
video data, we use the video segmentation method of [8],
which produces space-time segments. For optic flow esti-
mation, we use the method of [1], which is effective and
accurate. We expect other methods would apply as well in
each case.

Several recent papers have explored regressing depth
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Figure 3. Examples of images from each dataset. Our method works better than [6] [12] on both 12 and 24 times. The results of [6] [12]
become bad quickly when the upscale ratio increases, while our method is more stable with the upscale ratio.

against a single image (see review in [16]). The best per-
formance to date has been displayed by a deep network [4].

3. Method

Assume we have an image and scattered depth samples.
Our method builds the image segmentation tree, using the
scattered depth samples to merge the segments in the tree,
then uses smoothing methods to reconstruct depth within
each segment independently. For video, we use space-time
segments and optic flow methods to move time-stamped
samples in space, but otherwise proceed as for static im-
ages. Pipeline is in Figure 2.

3.1. Image Segmentation

The segmenter of [5] is a form of agglomerative cluster,
and so produces a tree of region merges (known as a dendro-
gram in the clustering literature). Each image segmentation
is a choice of the region merges in the segmentation tree.
Previous methods use pixel colors and cross-validation to
do this. In our application, we have depth samples, which is
useful in identifying segmentations. So we use depth sam-
ples to guide the process of region merging.

For each neighboring region pair, we compute a score
measuring the consistency between the depth pairs on
the segmentation boundary, where a higher score means
better segmentation. Write c¢; for the ¢’th sample loca-
tion, d¢(c;, c;) for the difference in depth at the ¢’th and
j’th sample points, and § and p for parameters. Write
’Y(cia C], 5) for

min(dy(c;, ¢;), 9)
é

We score the consistency Cs(c;,c;) of each neighboring
sample depth pair using

Cy(circ;) = (e — (e ¢, c; share a segment
ST evteies) otherwise

We use 1 = 1 and fixed 0 for each dataset. Notice that
larger (resp. smaller) p values would tend to produce fewer

(resp. more) segments. For each image, we first build the
segmentation tree with fixed number of levels and mini-
mum area sizes for each dataset. Then, we start with the
level that contains the largest segments, and recursively for
each segment use the consistency score to decide whether
go down to the next level of the segmentation tree. The al-
gorithm is robust to segmentation results. This is mainly
because the depth samples can fix segmentation problems,
especially over-segmentation.

3.2. Depth Smoothing

We now have a set of image segments, and a collection
of depth samples. For each segment, we will smooth the
samples inside the segment to form a dense depth map. By
using only the samples inside the segment, we can obtain
sharp depth boundaries at image segment boundaries. Once
each segment has a depth map, we compute an overall depth
map by copying the depths from each segment to the image
plane.

We describe two methods of smoothing. Our simple
depth smoothing algorithm is a form of scattered data in-
terpolation. It helps to understand the smoothing system,
is faster than the advanced smoothing, and could easily be
implemented in parallel. Our advanced depth smoothing
algorithm allows some large derivatives of depth. Experi-
mental results show the advanced method is better at dealing
with complex depth images, poor segmentation, and noise
in depth samples. Preliminary, experiments demonstrated
the advanced method have an RMSE approximately 5% bet-
ter than the sample method and all results reported are for
the advanced method.

3.2.1 Simple Depth Smoothing

Write c¢; for the location of the i’th sample, z(c;) for
the value at that sample point, x for a variable point in
the image and z(x;a) for the reconstructed depth func-
tion, a for the parameter vector. We start with a set of ra-
dial basis functions centered at each sample point. Write
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d(x;¢;) = f(|x —c;|) for the radial basis function cen-
tered at c¢;. Write dmax as max influence range, we have

f(u) = max(1 — ,0)?

max

We wish to blend depth estimates from nearby samples
at a given point x. So it is natural to work with a set of basis
functions that add to one at every point. Define

B(x;ci) = 7(1)(}(’ c)
> j o(x;¢;))
(assuming that dmax is chosen so that at least one ¢ has a
non-zero value for all x in the image).

We assume that there is an initial prior model of depth
zz(x). In our experiments, this is usually a zero offset
plane, but when the samples are super sparse, using depth
maps reconstructed from other methods as frontal plane is
useful. However, when images are known to have a par-
ticular structure — for example, to be images of rooms as
in [13] — it might be useful to have some more complex
model. Our depth interpolation is

xia) = Y aiBlxs i) + 2 (x)
i
where a are determined by solving the linear system

z(cj;a) = Zaiﬂ(cj% ¢;) + zx(c;).

With reasonable choices of dmax, this system has full rank,
and so the solution yield an interpolation. In our implemen-
tation, dmax is twice the average spacing between samples.
This means that at any point relatively few ¢ have non-zero
values, meaning that evaluating the blending weights is fast.

3.2.2 Advanced Depth Smoothing

There are some difficulties with the simple depth smoothing
model. First, it yields an interpolation, which means that
noisy depth measurements can seriously disrupt the recon-
struction. Second, the basis functions do not encode large
depth derivative particularly well. We introduce further ba-
sis functions to remedy these problems. At each sample
point ¢ we place a unit vector u;. Then

Y(x5ci,1;) = o(x;¢) (U (x — ¢;))

is a basis function with value 0 at x = c¢;. The gradient on
position c; is large, and it can be steered by choice of u,.
Our smoothed depth model becomes

(Z aiﬂ(x;cn) +
(Z bid)(x;ci,ui)) + 2 (x).

z(x;a,b,u) =

We must now choose values of a, b and u to produce a re-
construction. We do so by minimizing an objective function
that is a sum of three terms, each capturing a natural require-
ment of the problem. First, we expect that depth samples
have relatively low noise, so we expect £ to be small.

Ei(ab,u) =3 (z(cjab.u) - z(c)))’

J

Second, we expect that there are relatively few sharp
depth gradients, so that we expect Es to be small.

EQ(avb=u> = “bul

The L; norm here encourages most of the b; to be zero.

Finally, at each grid sampling’s grid box center xy, the
depths predicted by any two distinct nearby sample points
need to be consistent with one another. Write N (xy,) for a
neighborhood around x;. We expect that F3(a, b, u) to be
small, which is

2 2

k ci,c;eN (k)

< a;(Xp; €;) + bt (xp; €5, 1) )2
) b)

—a;p(Xk; cj) — bjv(xp; €, 1y

We choose parameters by optimization, and the weights are
chosen by cross-validation.

argmin
a.b.u MEL+ A By + A3E;3

3.3. Video Data

Our method also applies to video data with some modi-
fications. We use space time segments, because we expect
depth to be fairly smooth within a space time segment, but
change on its boundaries (for example, an object moving
behind an obstacle). We reconstruct from depth samples
that are time-stamped (obtained at a certain time, but have
effects at a time period). First, consider points nearby in
space. We expect the depth at these points to be similar.
This justifies using a smoothing where the influence of a
sample declines as points get further away. But temporal
smoothing is somewhat different. At each depth sample,
we can compute optic flow, which is used to predicts the
location of the sample forward and backward in time, by
moving the depth sample along the flow dirction. For some
time interval, we can trust these flow-based predictions, so
we transport depth samples along the flow direction before
interpolation. We allow the sample to have influence for
times up to 6t in the future and —dt in the past, and the
weighting of a sample declines as the inter-frame time in-
terval increases. We use

min(— log(|At|)/dt, C)
C

w(At; 6t,C) =
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[log10, RMSE], smaller is better.

Dataset Middlcbury Dataset NYU Dataset
Ratio 24x24 times (41,55) | 16x16 times (69,82) | 12x 12 times (92,109) | 8x8 times (138,163) | 24x24 times (18,24) | 16x 16 times (27,36) | 12x 12 times (36,47) | 8x8 times (54,71)
Near | 0.0121 0.0366 0.0082 0.0291 0.0056 0.0240 0.0036 0.0189 0.0134 0.1656 0.0111 0.1444 0.0065 0.0977 0.0061  0.0929
Bicubic | 0.0139 0.0313 0.0096 0.0246 0.0070 0.0199 0.0047 0.0156 0.0115 0.1333 0.0099 0.1223 0.0055 0.0755 0.0057  0.0780
[12] n/a 0.0340 n/a 0.0259 n/a 0.0198 n/a 0.0166 n/a 0.1588 n/a 0.1388 n/a 0.1026 n/a 0.1003
[6] n/a 0.0406 n/a 0.0269 n/a 0.0190 n/a 0.0138 n/a 0.2157 n/a 0.1393 n/a 0.0989 n/a 0.0649
Our 0.0055 0.0186 0.0042 0.0155 0.0034 0.0138 0.0027 0.0119 0.0083 0.1119 0.0051 0.0809 0.0039 0.0660 0.0026  0.0496
Dataset Sintel Dataset Gesture Dataset
Ratio 24x24 times (19,43) | 16x16 times (28,64) | 12x12 times (37,86) 8x 8 times (55,128) | 24x24 times (17,25) | 16x 16 times (25,37) | 12x 12 times (34,49) | 8x8 times (50,73)
Near | 0.0278 1.7290 0.0181 1.4092 0.0157 1.3917 0.0085 0.9923 0.0165 0.0284 0.0114 0.0239 0.0092 0.0198 0.0059  0.0157
Bicubic | 0.0339 1.4607 0.0226 1.1764 0.0196 1.1932 0.0114 0.8240 0.0180 0.0249 0.0128 0.0205 0.0106 0.0171 0.0068  0.0131
[12] n/a 1.4461 n/a 1.1586 n/a 1.0219 n/a 0.7975 n/a 0.0249 n/a 0.0207 n/a 0.0193 n/a 0.0176
[6] n/a 1.5691 n/a 1.1608 n/a 0.9071 n/a 0.6491 n/a 0.0286 n/a 0.0237 n/a 0.0215 n/a 0.0183
Our 0.0135 0.9454 0.0088 0.7971 0.0066 0.6940 0.0047 0.5908 0.0123 0.0204 0.0094 0.0168 0.0079 0.0147 0.0056  0.0118

Table 1. Depth error compared to ground truth on four kinds of datasets using nearest neighbor, bicubic, [12], [6] and our method. In the
row Ratio, 12 x 12 means 12 times super resolution in each direction, and (92,109) means there are 92 by 109 boxes in the sample grid.
log10 is the mean absolute error of log10 depth. RMSE is root mean square error of recovered depth with respect to the ground truth data.

At is the inter-frame time interval, and the function value
decreases as |At| approaches dt.

Now write ¢;(t;, T') for the location of i’th sample point,
which was obtained at time ¢;, and current time is 1. Write
c;(t;) for c;(t;,t;). The location can be estimated from the
optical flow vector v by approximate integration as

At
Ci(ti,T) = Ci(ti, T — At) + Z V(Ci(ti,T — td>).
tq=1

We can now extend our simple depth interpolation model
to obtain

2(x,T;:a) = Z ai [B(x; ¢i(ti, T))w(T — ty; 6t, C)|+2x(x).

In principle, a can be solved by solving a linear system to
interpolate the sample points. This linear system is large,
and grows with the size of the video. It’s hard to solve it
directly, so we use a simple and effective approximation.
Each depth sample arrives at a frame time, so we can col-
lect the components of a into groups that apply to particular
frames. We solve for each frame independently, then use
the resulting a to reconstruct depth. This approximation is
efficient.

Similarly, we extend our advanced depth interpolation
model so that z(x,T’;a, b, u) is given by

aiB(x;ci(t;, 1))+

; K ARSI >w(Tti;5t, C’)} ().

Again, we find it sufficient to solve a, b, and u frame by
frame, and then reconstruct for the whole sequence.

4. Experimental Procedures

Generally, we obtain high resolution depth maps, sub-
sample them, reconstruct using our methods, then compare
the reconstruction to the original depth maps. For the Sin-
tel dataset, the high resolution depth maps are ground truth;
for others, they are the best available depth maps. We aim to
produce reconstructions that are as close as possible to the

high resolution depth. In our paper, performance is mea-
sured in three ways. First, the recovered depth accuracy,
such as RMSE. Second, the complexity of the algorithm,
such as run time and parallelization. Third, qualitative and
quantitative results in applications such as hand tracking.

4.1. Datasets

We apply our method to four different datasets: the Mid-
dlebury stereo dataset [27] [28], the NYU indoor scene
dataset [24], the Sintel synthesised dataset [2] and our Ges-
ture Kinect dataset. These datasets cover a wide range
of different types of data (near views; distant views; sim-
ple depth profiles; complex depth profiles). Because these
datasets are very large, we use 30 representative examples
in each dataset; details are included in supplementary mate-
rials. The Middlebury dataset is the most widely used stereo
dataset and is also the dataset most super resolution methods
use. This dataset contains high resolution depth with lots of
details and the images contain lots of textures, which are rel-
atively challenging for segmentation. The NYU dataset is
collected from Kinect with extensive post processing, so the
depth is better than the Kinect raw depth. This is a widely
used RGBD dataset for data driven RGBD image analysis.
The Sintel dataset is a synthesized dataset and contains lots
of depth details and high quality images. This dataset uses
physical simulation to synthesize complex scenes.

4.2. Subsampling Strategies

We adopt a strategy standard in ray-tracing circles by
subdividing the image into grids, then drawing one sam-
ple per grid box. Note that we do not smooth depths before
sampling, because we do not envisage that future depth sen-
sors will be able to do so. This means that conventional re-
construction techniques applied to the sampled depths alone
will alias significantly.

Generally, we describe a particular sampling regime by
the size of the box of pixels replaced by a single sample, so
that a 64 x 64 result refers to a case where there are 4096
times as many pixels to reconstruct as there are samples. We
explored two protocols for drawing samples: Fixed Sam-
pling, where the sample is in the center of the box (Z;;
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48 by 48

Figure 4. A comparison between [6], per-frame reconstructions, video reconstructions, skip 1 depth frame out of every 2 depth frames and
skip 2 depth frames out of every 3 depth frames for examples from six sequences. Note that for drop frames, the frames we show here have
no depth values. Our video reconstruction works best and even our drop 2 frames works better than [6], especially when the upscale ratio

is big.

for depth at pixel ¢,7, depth samples are i = ka, j = kb,
a=1,2,3,b=1,2,3, kis the integer ratio). Results in the
paper are from fixed samples; we have also experimented
with Gaussian Sampling, where the location of the sample
is a draw from a normal distribution with mean the box cen-
ter and standard deviation % box edge length. As one would
expect, we find that differences in error statistics are small,
slightly favoring Guassian Sampling. Details in supplemen-
tary materials.

[bad pixel %, RMSE], smaller is better.
Ratio | Method Tsukuba Venus Teddy Cones
Near | 353 1.189 | 0.81 0408 | 6.71 1.943 | 544 2470
Bicubic | 3.84 0.673 | 0.88 0290 | 443 2268 | 598 2336
4 132] 256 n/fa | 042 n/a 595 n/a 4.76 n/a
X [11] 295 0450 | 0.65 0.179 | 4.80 1.389 | 6.54 1.398
4 [18] 173 0487 | 025 0.129 | 354 1.347 | 516 1383
[6] 3.03 0.898 | 043 0201 | 6.03 0817 | 298 0.942
Ours | 206 0.590 | 029 0.185 | 2.03 0.593 | 2.56 0.938
Near | 356 1.135 | 1.90 0.546 | 109 2.614 | 104 3.260
Bicubic | 6.67 0.972 | 2.03 0427 | 109 2758 | 11.9 3.300

8 [32] 695 nfa | 1.19 n/a | 1150 n/a | 11.00 n/a
X [11] 559 0713 | 1.24 0249 | 114 1743 | 123 1.883
8 [18] 353 0753 | 033 0.156 | 649 1662 | 922 1871

[6] 596 1.135 | 198 0338 | 120 1376 | 142 1.709
Ours | 3.52 0.773 | 047 0.258 | 3.82 0.863 | 3.65 1.041

Table 2. Comparison with state of art methods on Middlebury
dataset. Our method is better than other methods, especially when
the image quality is similar to current camera images (eg Teddy;
Cones). Images in supplementary material. Bad pixel % is the
percentage of bad pixels with respect to all pixels of the ground
truth data with error threshold 1.

4.3. Dealing with Noise

The gesture dataset uses raw Kinect depth, so there is
noise, mis-alignment and missing values. We deal with
depth missing values by using only known depth values. If
the segment being smoothed contains only unknown val-
ues we mark the segment as having a unique missing value
or use the average of the near known neighbors. We con-
trol measurement noise by using the advanced smoothing
method, which does not interpolate and tends to make the
surface smooth in most places. Two approaches help us
deal with mis-alignment between the camera and the depth
sensor. First, the advanced smoothing method is likely to
get rid of a single point that is very different from other
points. Second, we identify the largest and smallest ten per-
cent of the depth values within a segment. Any of these
points which are also close to the boundary of the segment
may represent alignment problems. At problem points, we
replace the depth value with a weighted average of the near-
est neighbors within the segment, using neighbors that are
not themselves problem points.

5. Results

Our method yields state of the art results compared to
strong recent methods (Table 1, Table 2, Table 3) in both
image depth super resolution and video depth super resolu-
tion. Results for images depth super resolution are in Fig-

2250



[log10, RMSE], smaller is better

Ratio

Method

Market

Alley

Ambush

Cave

Office

Gesture

12
X
12

Near
Bicubic
[6]
Frame
Drop 1
Drop 2
Video

0.0531
0.0734
0.0667
0.0261
0.0411
0.0531
0.0247

4.9773
4.2884
3.7422
2.5656
2.6793
2.8404
2.4703

0.0174
0.0182
0.0215
0.0131
0.0256
0.0310
0.0101

2.0154
1.7009
1.7058
1.3151
1.5682
1.6690
1.2110

0.0204
0.0276
0.0232
0.0082
0.0216
0.0279
0.0080

1.0543
0.8958
0.5401
0.4580
0.5901
0.6516
0.4511

0.0319
0.0508
0.0505
0.0188
0.0497
0.0708
0.0200

3.9762
3.3315
3.4666
2.4652
4.5012
5.7482
2.4813

0.0086
0.0092
0.0131
0.0081
0.0062
0.0066
0.0055

0.0365
0.0313
0.0369
0.0290
0.0233
0.0244
0.0208

0.0196
0.0210
0.0264
0.0147
0.0133
0.0138
0.0120

0.0494
0.0436
0.0356
0.0335
0.0323
0.0329
0.0318

24

24

Near
Bicubic
16]
Frame
Drop 1
Drop 2
Video

0.0899
0.1210
0.1426
0.0433
0.0524
0.0660
0.0370

6.3113
5.4869
5.1486
3.2642
3.0734
3.2973
2.8828

0.0301
0.0294
0.0437
0.0227
0.0307
0.0361
0.0154

27225
2.3210
2.3575
1.7317
1.7939
1.9139
1.4826

0.0366
0.0486
0.0842
0.0125
0.0247
0.0313
0.0116

1.3846
1.1637
1.1855
0.5612
0.6407
0.7090
0.5364

0.0626
0.0903
0.1306
0.0303
0.0582
0.0793
0.0297

5.4765
4.6378
54775
3.1358
4.8841
6.0418
3.1537

0.0153
0.0157
0.0255
0.0124
0.0093
0.0098
0.0084

0.0508
0.0434
0.0592
0.0377
0.0303
0.0318
0.0281

0.0324
0.0343
0.0486
0.0219
0.0199
0.0209
0.0184

0.0659
0.0549
0.0671
0.0405
0.0369
0.0382
0.0364

48

as

Near
Bicubic
[6]
Frame
Drop 1
Drop 2
Video

0.1396
0.2034
0.2347
0.0761
0.0753
0.0932
0.0582

8.0155
6.8604
6.2689
4.3003
3.6223
4.0598
3.3440

0.0555
0.0547
0.0781
0.0322
0.0391
0.0452
0.0231

3.5887
3.1245
3.1700
22228
2.0803
2.1789
1.7372

0.0738
0.0941
0.1195
0.0216
0.0334
0.0405
0.0181

1.9890
1.7141
1.7024
0.7437
0.8215
0.8701
0.6774

0.1197
0.1468
0.1633
0.0560
0.0816
0.1054
0.0480

7.6708
6.6947
6.8265
4.2849
5.8359
7.0715
4.1890

0.0304
0.0293
0.0356
0.0165
0.0148
0.0155
0.0138

0.0781
0.0690
0.0759
0.0435
0.0411
0.0434
0.0387

0.0619
0.0640
0.0795
0.0358
0.0292
0.0309
0.0276

0.0955
0.0846
0.0944
0.0534
0.0456
0.0492
0.0433

64

64

Near
Bicubic
16]
Frame
Drop 1
Drop 2
Video

0.1588
0.2113
0.2206
0.1087
0.1037
0.1183
0.0847

8.1772
7.2739
7.3979
5.1097
4.4940
4.7300
3.9590

0.0544
0.0488
0.0857
0.0418
0.0466
0.0543
0.0320

3.9099
3.2382
3.8713
2.6876
2.3461
2.5789
2.0638

0.0681
0.0965
0.1371
0.0333
0.0427
0.0497
0.0261

1.9595
1.6106
2.1635
0.9675
0.9905
1.0212
0.8438

0.1040
0.1312
0.1791
0.0863
0.1060
0.1274
0.0721

7.4999
6.3807
8.2218
5.6128
6.9270
7.9395
5.2936

n/a
n/a
n/a
n/a
n/a
n/a
n/a

n/a
n/a
n/a
n/a
n/a
n/a
n/a

n/a
n/a
n/a
n/a
n/a
n/a
n/a

n/a
n/a
n/a
n/a
n/a
n/a
n/a

Table 3. Comparison between nearest neighor, bicubic, [6], our image super resolution, our video super resolution, our skip 1 depth frame
out of every 2 depth frames and skip 2 depth frames out of every 3 depth frames results. Our image super resolution performs much better
than nearest neighor and [6]; our video super resolution is better still; even our drop depth frames works reasonably well.

ure 3.

5.1. Video Super Resolution

Using the space-time structure of video yields better re-
sults than performing super resolution frame by frame. We
evaluated our methods on the Sintel dataset (where there
is high resolution ground truth depth), and on Kinect se-
quences. In each case, we used calculated optical flow
(rather than ground truth, which Sintel provides). Table 3
shows our per frame super resolution is generally better than
all other methods, and that our video super resolution is bet-
ter than our per frame super resolution. We also works on
dropping depth frames, which means at that frame, there are
only RGB image and no depth vlaues. Figure 4 shows one
of the video frames in different videos.

Looking at the video from Kinect, one can see smoothed
noise in reconstructions, resulting from the relatively low
sampling rate (depths appear to blink or flash). Note that
there is a visible measurement noise in the kinect. Note
also that this noise is suppressed, but not removed, by using
video rather than per-frame reconstruction.

5.2. Comparisons

Kinect fusion recovers improved accuracy depth maps
by fusing multiple depth maps from many different view-
points [14]. We have no ground truth depths available to do
qualitative comparisons, so we show an example comparing
our results (with downsampled raw kinect depth as input)
with kinect fusion for a view of a keyboard, which contains
many fine structures. Figure 6 shows the results and each
key on the keyboard occupies about 100 pixels. The input
Kinect raw depth is noisy and our results are better than the

Image Kinect Fusion

Kinect Depth

e . 8
e

4 by 4 Ours 8 by 8 Ours 12 by 12 Ours
Figure 6. Our depth map is comparable to that obtained by kinect
fusion, and rather better than raw depth, especially when the super

resolution ratio is small. More information is in the movie.

input raw depth. Our results are also comparable to kinect
fusion when the upscale factor is relatively small. When
the upscale factor is large, many key segments don’t have
sample data so our method cannot recover these depths.
Super sparse sampling presents particular challenges.
Figure 5 demonstrates our method can operate in this
regime. Notice that using a z, obtained from depth transfer
methods yields an improved reconstruction in this regime.

5.3. Applications

Depth information is very useful. We demonstrate that
our depth super resolution method supports two representa-
tive and challenging applications: object insertion and hand
tracking from Kinect.

Object insertion methods estimate a depth map for a
legacy photograph using depth transfer, then allow users
to drag new objects over the estimated scene [17]. Errors
in the depth estimate lead to distracting effects in the drag
interface. The improvements obtained by our method are
sufficient to improve behavior of this interface (see the ex-
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Depth 64 by 64 Recon, flat initial Recon, DT initial Depth 100 by 100 Recon, flat initial Recon, DT initial

Figure 5. At very sparse depth sampling regimes, the depth map inferred by depth transfer can improve the inferred depth, likely by
providing good estimates of low spatial frequency components lost in the sampling. We exploit this information using depth transfer as z.
in our reconstruction method. The figure shows an example from 64 x 64 and from 100 x 100 subsampling (“initial” refers to z,). Note

the significant improvements obtained by using depth transfer in this case.

Kinect Depth Near 1G[6] Ours

Tracker Status.
Figure 7. Our reconstruction methods support hand tracking from
aggressively subsampled depth maps. The hand tracker works
much better on our depth, than Near and [6].

ample in the movie).

Hand tracking is an important application of Kinect
which is sensitive to the quality of depth estimates. We
evaluated the forth hand tracker [25] [19], (the best cur-
rently available depth based hand tracker) on raw kinect
depth maps, depth maps subsampled to 24 x24 then recon-
structed with nearest neighbors, [6] and our method. Using
our depth works as well as using raw kinect depth, while
using nearest neighor and [6] depth creates significant dif-
ficulties for the tracker (as judged qualitatively by average
tracker score in supplementary materials). Figure 7 shows
visual results; there are more examples in the movie.

6. Depth from No Samples

Our method works well because the spatial model is ef-
fective; depth really does change quickly at segment bound-
aries, and slowly elsewhere. This suggests applying the
method when there are no samples. There is a consider-
able literature on regressing depth against images (review
in [16]). All methods tend to produce very smooth depth
maps as a result of the estimation procedures. The best
performing method uses deep network features to repre-
sent the image, and regresses depth against these features
[4]. Because the features are largely invariant to small local
shifts of image patches, the regressed depth is smoothed. It
is simple to impose a spatial model that is more sensitive
to depth boundaries using our method. We subsample the
depth map produced by the method of [4], use mean median
filter to process depth samples within each image segment
for robustness reasons, then upsample using our method.
This introduces stronger depth gradients at segment bound-
aries, and leads to a useful improvement in reconstruction
error. Qualitative and quantitative results are in supplemen-

tary materials.

7. Discussion and Limitations

Speed: Currently, our advanced method does not run in
real time, but the basic method could. Our platform is Win-
dows 8.1 and Matlab 2012b, with 12 GB memory and Intel
Core i7. For the biggest images (1300*1100) in dataset, the
times are as follows. [6] is about 800s, and [12] is about
30s. For our advanced version, time is about 20s, for our
simple version, time is about 5s. The time for each frame
in video is similar to single image. The simple version is
likely to be real time with good parallel implementation.

Optical flow: Our method extends to upsampling optical
flow fields rather well (because flow boundaries tend to ap-
pear at image segment boundaries). Detailed results appear
in supplementary material. Currently, we have no evidence
that a speedup is available from this observation.

Fine details: Our method cannot recover fine or com-
plex surface relief, and will be unhelpful when there is
little contrast at object boundaries. Our method tends to
work poorly when there are many image segments without
a depth sample. Segmentation errors will clearly disrupt our
method. We believe that, in general, higher image resolu-
tion will have beneficial effects on our results, by producing
more detailed segmentations and more accurate optical flow
calculations. Finally, errors in sample depth can have seri-
ous consequences for our method.

We see a variety of interesting future avenues to explore.
A depth camera that makes few depth samples may be able
to make those samples more accurately. Finally, our method
is adaptive, and it would be interesting to explore proce-
dures that explicitly manage a budget of depth samples to
produce the best reconstruction. There is good evidence
(the results for skipped frames in Table 3) that one could
manage this budget over time (as with a power budget).
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