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Abstract

In many learning tasks, the structure of the target space of a
function holds rich information about the relationships between
evaluations of functions on different data points. Existing ap-
proaches attempt to exploit this relationship information implicitly
by enforcing smoothness on function evaluations only. However,
what happens if we explicitly regularize the relationships between
function evaluations? Inspired by homophily, we regularize based
on a smooth relationship function, either defined from the data
or with labels. In experiments, we demonstrate that this signifi-
cantly improves the performance of state-of-the-art algorithms in
semi-supervised classification and in spectral data embedding for
constrained clustering and dimensionality reduction.

1. Introduction

Regularization attempts to prevent overfitting in ill-posed
problems. It is commonly applied in semi-supervised learning
tasks: Given a sparse labeling on u data points with s labels
{(xi, yi)}si=1, our goal is to learn a function f which maps
from an input space M to a target space N . The lack of labels
is compensated for by exploiting unlabeled data points to
provide additional information, e.g., on the geometry of and/or
probability distribution onM , from which the data are generated.
Regularization tries to measure and limit the complexity of
proposed f solutions by preferring smaller training errors and
placing restrictions on smoothness. This established approach
helps solve a variety of learning problems, such as image and
shape classification, tracking, and retrieval (e.g., [21, 19, 5, 17]).

The target spaceN has a structure which may be defined im-
plicitly or, in some applications, explicitly through pair-wise sim-
ilarity or dissimilarity potentials. However, current regularization
methods operate only on the function itself, and do not explicitly
consider the potentially rich informative structure ofN as some-
thing which can be used for regularization. Regularizing the struc-
ture — or the relationships — is inspired by homophily, which is
actively used to predict relationships within social networks [13, 1,
9]: individuals with similar mutual friends, or local structure, are
more likely to influence one another, e.g., if two individualsA and
B are friends then they tend to have mutual friends, and ifA has an
enemy C, thenB is also likely to be an enemy of C. We demon-
strate that a priori knowledge of the smoothness of a relationship
between entities can be exploited in inference on the entity itself.
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Figure 1. If two data points x1 and x2 are close on the domain M
of f , then conventional regularizers enforce that the corresponding
function values f1 and f2 in co-domainN of f are similar (fi≡f(xi)).
We assume that relationships between pairs of function evaluations fi
and fj are represented by smooth functions k(fi,fj), e.g., a similarity
measure. Our regularizer explicitly enforces that k(f1,fj) and k(f2,fj)
are similar for any j. For instance, if k(f1,f3) is large as f1 and f3 are
similar, but k(f1,f4) is small as f1 and f4 are dissimilar (solid arrows),
then our algorithm enforces that k(f2,f3) and k(f2,f4) are large and
small, respectively (dotted arrows), as x1 and x2 are close inM . The
same principle applies to high-order relationships: if k2(f1, f5, f6)
represents a ternary relationship, e.g., a third-order correlation, the
similarity of k2(f1,f5,f6) and k2(f2,f5,f6) is enforced.

One example that benefits from this principle occurs when re-
lationship labels are provided. In semi-supervised or constrained
spectral clustering [12, 14, 18], the labels are provided not on
the underlying cluster assignment function f but on the binary
relationships k between the function evaluations, as must-link or
cannot-link labels. These are exploited by applying conventional
regularization on f with the condition that the constraints are
satisfied. However, in this case, the relationship itself can also
be a natural object to regularize (Fig. 1). Applying homophily,
if (x1,x3) must link, i.e., if they belong to the same cluster, then a
relationship function k onN is defined such that k(f(x1),f(x3))
is positive. For point x2, which is close to x1 in M , we expect
the relationship function k(f(x2),f(x3)) to be positive also.

In general, the relationship itself is not formally defined or
observed; however, in many applications, certain relationships
are manifested through a smooth function, where the number of
arguments corresponds to the relationship degree, e.g., a distance
metric is a function of two arguments. k can be defined either
directly from the data or from labels; either way, once the rela-
tionship is defined, regularization is independent of the existence
of labels and therefore applies generally to any learning problem.



1.1. Function-only and implicit relationships

We begin with a regularized empirical risk minimization
framework where f :M→N minimizes the energy functional:

E(f)=
∑

i=1,...,s

l(yi,f(xi))+λR(f), (1)

where λ is a regularization parameter, R : NM → R+ is the
regularization functional that measures the complexity of the
input function, and l :N×N →R+ is the loss function. For
simplicity, we assume thatN=Rn and adopt the squared loss:
l(a,b)=‖a−b‖2, but our framework can be easily extended to
other convex loss functions. Extension to non-Euclidean N is
also possible as discussed in Sec. 2.2.

While a variety of semi-supervised learning algorithms
can potentially benefit from our approach (see [4] for a
comprehensive survey), we focus on the successful class of graph
Laplacian-based approaches. One of the best-established classes
of regularizers is based on applying differential operators to f:

RD(f)=

∫
M

‖[Df](x)‖2dV (x), (2)

where domain M is the Riemannian manifold as is common
in semi-supervised learning, and dV (x) is the natural volume
element of M . If D is the first-order differential operator d

dx ,
thenRD is the familiar harmonic energy functional [2, 16]:

Rh(f)=

∫
M

‖[∇f](x)‖2T∗x dV (x), (3)

with Riemannian connection ∇ in M , and cotangent space
T∗x :=T∗x (M) ofM at x [11].

Roughly, this energy functional applies a differential operator
to the input function and measures the corresponding squared
norm. Minimizing this energy functional leads to a smooth
function with smaller first-order magnitudes. When M is only
indirectly observed through data point clouds,Rh is instantiated
based on the graph Laplacian [2], the performance of which has
been demonstrated in numerous applications.

Harmonic energy can be regarded as a first-order regularizer
since it directly penalizes only variations of f . For relationships,
denoted by double brackets, e.g., JA,BK, this roughly corresponds
to minimizing the pair-wise deviations between self-relationships
Jf(x+dx)K and Jf(x)K, where JAK is simply as informative as
A, with no consideration of relationships between entities.1

If we apply this first-order operator∇ twice to f , i.e.,D=∇2,
we minimize the resulting second-order energy and penalize
the deviations of the two pair-wise deviations Jf(x+dx),f(x)K
and Jf(x− dx),f(x)K. This can be regarded as an example
of a second-order relationship regularizer, with the relationship
defined as the difference between two entities. Higher-order
relationship regularizers then enforce smoothness on relationships
involving more than two entities by increasing the order ofD. For

1A mathematically-precise relationship definition is obtained by equating
the relationship with a set function F :2M →R. We do not adopt this definition
since we focus on specific relationships instantiated through smooth kernels
as defined in Sec. 2.1. In this sense, JAK can be identified with a set function
defined on singletons, equivalent to a regular function on M .

instance, the state-of-the-art p-iterated Laplacian semi-norm [20]
measures smoothness of (p−1)-th order relationships.

Rp(f)=

∫
M

f(x)[∆pf](x)dV (x). (4)

However, existing differential operator-based regularizers focus
only on local relationships. By construction, Df(x) is defined
for an arbitrarily small open set containing x, and so it does
not explicitly enforce smoothness over any pair Jf(x),f(x′)K
and Jf(x′′),f(x′′′)K of relationships when all four input points
x,x′,x′′,x′′′ do not lie within a small neighborhood — even when
x and x′′ are close. This property is shared by established regular-
izers in Euclidean space (i.e.,M is Euclidean): For instance, the
well-known Gaussian kernel regularizer corresponds to Eq. 2 with
D being a combination of powers of the Laplacian operator [15].

Implicitly, any existing regularization functional regularizes
any high-order relationships, as smoothness on f implies
smoothness on pairs Jf(x),f(x′)K. While apparently redundant,
we will show experimentally that adding explicit control
over relationship regularization increases utility over existing
function-only regularizers.

The success of local high-order derivative-based regularizers
supports this claim: In 1D space, minimizing the first-order
derivative norm as a regularizer implicitly minimizes all high-order
derivative norms, as the only null space of the first-order derivative
operator is the space of constant functions (as these have zero high-
order derivatives). Nevertheless, the use of high-order derivative-
based regularizers, e.g., thin plate spline and Gaussian regularizers,
is strongly supported by their empirical performances.

That high-order derivative-based regularizers can be con-
sidered as local high-order relationship regularizers, coupled
with the success of these approaches over first-order (or
non-relationship) regularizers, leads us to investigate the potential
of ‘longer-range’ relationship regularization. Among this various
set of apparently-redundant regularizers, which leads to improved
performance? We explore this potential and empirically validate
that explicitly exploiting rich structural information on non-local
relationships improves existing regularization algorithms.

2. Relationship regularization
To begin, we focus on a specific class of relationships and

discuss the ideal case where we know M exactly. In Section
2.3, we present a practical algorithm for when M is indirectly
represented as a sampled point cloud X={x1,...,xu}.

2.1. Class of relationships
In many problems,N has relationship structure that is either

canonically specified by the problem or is given implicitly. In clas-
sification, the target space is the discrete space of class member-
ships. In this case, the natural relationship Jf(x),f(x′)K is binary:
either same class or different class. In matching, Jf(x),f(x′)K is
either match or no match.2 In Markov random fields (MRF),N
can be explicitly provided with a pair-wise potential p :N×N→
R, or an n-ary potential q :Nn→R [10]. In many cases, these

2f may not be explicitly defined as the primary object in the relationship.



relationships represent similarity between pairs or n-tuples of
entities; in general, any non-metric relationship can be defined,
e.g., left of or on top of for generating topographic maps.

These relationships can be represented by an n-th order rela-
tionship function k defined onNn, wheren is application specific.
In principle, any relationship function can be regularized; for nu-
merical optimization, we focus on k that is smooth wrt. the input
arguments (i.e., k∈C∞(Nn)). Specifically, for semi-supervised
learning, we use a Gaussian relationship function k:

k(f(x),f(x′))=exp

(
−(f(x)−f(x′))2

σ2f

)
(5)

where σ2f>0. We assume that f∈C∞(M), which we regularize
as aided by relationships. We obtain the final class membership
{−1,1} by thresholding the output space.

2.2. Regularization on relations

Our proposed regularizer assumes the general cases where
N is a Riemannian manifold (though many examples, including
our demonstrations, are Euclidean in N). First, we discuss a
straightforward approach which is not computationally practical
for large problems. Then, we develop this intuition further to
arrive at a computationally-affordable solution.

We construct the regularizer of f based on the regularization
of relationship k on the evaluations of f . First, we construct the
pullback function [11] f∗k of k based on f:

f∗k(x,x′):=k(f(x),f(x′)). (6)

This operation casts k, originally defined onN2, into a function
defined onM2 so that it can be regularized based on the differen-
tial structure onM2: Since f∗k∈C∞(M2), we can immediately
extend the harmonic energyRh and the p-iterated Laplacian semi-
normRp as defined now on M2 by noting that f∗k can be re-
garded as a single-argument function on the product manifoldM2:
1) The tangent space for the point (x,x′) is defined based on the
direct sum: T(x,x′) :=Tx⊕Tx′; 2) The Riemannian metric is de-
fined by gM2(x1+x2,x

′
1+x′2):=gM(x1+x2)+gM(x′1+x′2),

which fixes the natural volume element dV (x,x′); 3) Based on 1)
and 2), the differential structure∇M2 follows naturally from∇M .

The resulting new energy is in the same form asRh (Eq. 3)
except that its domain is nowM2 instead ofM :

Rprod
k (f∗k)=

∫
M2

‖[∇f∗k](x,x′)‖2T∗
(x,x′)

dV (x,x′). (7)

The biggest obstacle to apply this straightforward construction
to semi-supervised learning is its high computational complexity.
When approximatingRh andRp based on a sampled point cloud
of size u, the corresponding approximations are calculated based
on u×umatrices (Sec. 2.3). For the product manifoldM2, the
approximations now require building regularization matrices of
size u2×u2, which become infeasible even for moderate u.

Our approach is to make the roles of x and x′ asymmetric
in the regularization. For a given pair-wise relationship function
k, we construct an auxiliary single-argument function h and the

corresponding pullback function f∗h as:

hy′(y):=k(y,y′)∈C∞(N), (8)
f∗hx′(x):=hf(x′)(f(x))∈C∞(M). (9)

Now, we define new extensions of harmonic energy functional
and p-th iterated Laplacian energy functional as:

Rh
k(f)=

∫
M

∫
M

‖∇f∗hx′(x)‖2T∗x dV (x)dV (x′), (10)

Rp
k(f)=

∫
M

∫
M

hx′(x)[∆pf∗hx′(x)]dV (x)dV (x′). (11)

For each fixed x′ in the function, f∗hx′(x) encodes the
relationship between f(x) and f(x′), and since f∗hx′(x) is
a function of a single variable x ∈ M , ∇f∗hx′(x) lies in
T∗x (M). This makes the interpretation of Eqs. 10 and 11 also
straightforward: the inner integral measures the variation of
f∗hx′(x) that corresponds to pair-wise relations between the
fixed x′ and each value of x. In particular, when k(a,b) measures
the Euclidean distance between a and b, the inner integral is
zero only when the distances between each pair Jf(x),f(x′)K
are identical for all x∈M . This does not require that k is zero.
Then, the outer integral averages x′ over the entireM .

For an n-th order relationship function q, the corresponding
Rq’s can be defined similarly through an n-times iterated
integration: For each case, a pull-back function similar to
f∗hx′(x) is defined as a C∞ function on M . An important
advantage of this asymmetrization is that now the corresponding
approximate regularization matrices retain the sizes of u×u (see
Sec. 2.3) and accordingly they afford practical applications.

It should also be noted that currently, our regularizer does not
exploit the potential differential structure of the target manifoldN .
While the differential structure ofN is irrelevant in most applica-
tions we foresee, for interested readers, we note that in principle,
our regularizer can take this structure into account by pulling
it back toM , i.e., to use the pullback connection f∗∇N [16].

2.3. ApproximatingRk from a sampled point cloud

In many practical applications,M is not directly observed but
indirectly represented as a sampled point cloud X={x1,...,xu}
and accordingly, we approximate Rk based on evaluations of
f on X . For a given relationship function k, our approximate
regularization functional toRh

k is defined as:

R̃h
k(f)=tr[K>LK], (12)

where tr[·] is the trace, Kij := k(f(xi),f(xj)), and L(u×u)
is the graph Laplacian:

L=D−W, (13)

where Wij = exp
(
−‖xi−xj‖σ2

x

)
when xi, xj are k-nearest

neighbors and 0 when not, σ2x is a hyper-parameter, and D
is a diagonal matrix containing the column sums of W . For
exposition, we use the unnormalized graph Laplacian. However,
our results straightforwardly extend to normalized graph
Laplacian cases, which we use for all experiments (Sec. 4.3).

By noting that the i-th column K[:,i] of K corresponds to a



discrete approximation of f∗hxi(·), the convergence of R̃h
k to

Rk can be easily established based on the convergence results
of the graph Laplacian to the Laplace-Beltrami operator [2, 6].
Proposition 1. Let M be a connected, compact submanifold
of RM without boundary and Xu = {x1,...,xu} be sampled
from a uniform distribution on M . Then, for f ∈C∞(M) and
k∈C∞(N×N) and σ2x(u)=u−

1
m+2+α with α>0,

lim
u→∞

R̃h
k(f)

u3(σ2x(u))m/2+1
=
Rh
k(f)

V (M)2
, (14)

in probability, where V (M) is the volume ofM .
Proof. The proof is similar to that of Theorem 4 by Zhou and
Belkin [20]. Since f∈C∞(M) and k∈C∞(N×N), f∗hx′∈
C∞(M). Then, applying the convergence result of graph Lapla-
cian to f∗hxi for a fixed xi [2], we have ∀xj∈X in probability,

lim
u→∞

[LK[:,i]]j

u(σ2x(u))m/2+1
=∆f∗hxi(xj). (15)

For Eq. 14, we apply the law of large numbers and then Green’s
identity [11] for a compact manifold without boundary to Eq. 15:∫

M

f∆gdV (x)=−
∫
M

〈∇f,∇g〉T∗x dV (x). � (16)

For simplicity, we assume a uniform sample distribution on
M . However, this result extends to non-uniform underlying
probability distributions P onM via Hein et al. [6]. In this case,
the integrand in Eq. 10 is weighted by the corresponding density.

Similarly to Rh
k, the approximate regularization functional

toRp
k is defined as:

R̃p
k(f)=tr[K>LpK]. (17)

Given Prop. 2.3 conditions, the convergence of R̃p
k toRp

k follows
from Eq. 16 and the fact that ∆f∈C∞(M) for f∈C∞(M).

3. Semi-supervised learning

Given the two regularizers R and Rk (Eqs. 3 and 10 or
Eqs. 4 and 11) and the loss function (l; Eq. 1), we state our
semi-supervised learning algorithm:

Ek(f)=(f−t)>H(f−t)+λ1f
>Gf+λ2tr[K

>GK]

≈
∑

i=1,...,s

l(yi,f(xi))+λ1Rh(f)+λ2Rh
k(f), (18)

where f =[f(x1),...,f(xu)]>, H is a diagonal matrix, Hii=1
if i-th data point is labeled (0 otherwise), λ1 and λ2 are regular-
ization hyper-parameters, andG is L or Lp. For t, if the i-th data
point is labeled, ti is the corresponding label yi, or otherwise 0.

While the first two summands in Ek are convex with respect
to f , the third term is non-convex. We minimize Ek based on con-
jugate gradient (CG) descent. We set the initial solution f0 as the
minimizer of Ek with λ2 held fixed at 0, which can be analytically
computed. Hence, the entire optimization process is deterministic.

With the Gaussian relationship function (Eq. 5), the gradient

of each summand for the t-th function evaluation is:
∂(f−t)>H(f−t)

∂f
= 2H(f−t) (19)

∂f>Gf

∂f
= 2Gf (20)

∂tr[K>GK]

∂ft
= 2tr[K>G

∂K

∂ft
], (21)

where f=[f(x1),...,f(xu)]> and

∂Kij

∂ft
=

 −
2(fi−fj)
σ2
f

Kij if i=t

−2(fj−fi)
σ2
f

Kij else if j=t.
(22)

For (binary) classification problems, yi∈{−1,1}. In Sec. 3.2,
we discuss the dimensionality reduction problem where the output
dimensionality n is larger than 1 and accordingly f(x) is a vector.

3.1. Sparsity

Our empirical explicit relationship regularizer enforces
smoothness across every possible pairwise evaluation of the
function f . This leads to a dense matrix K in Eq. 18. For
large-scale problems, we can construct a sparse version of the
regularizer by discarding the smoothness enforcement over the
relationships that are evaluated for distant points, and focus only
on local neighborhoods (not to be confused with the locality of
the regularizer, i.e., neighborhood for graph Laplacian):

EkS(f)=λ2
∑
i

∑
jk

(Kij−Kik)
2Wjkgijgik, (23)

where gij=1 if xi and xj are in a specified neighborhoodNK
and gij =0, otherwise. When the neighborhood size is infinite
(i.e., g=1), EkS is the same as the original regularizer in Eq. 18.
Otherwise, EkS enforces smoothness only for relationships that
are defined for function evaluations of close input points.

3.2. Relationship labels and spectral embedding

For some applications, the relationships K themselves are
natural variables of interest, and so training labels can be user
provided. For instance, in spectral embedding such as for cluster-
ing and dimensionality reduction, e.g., in scientific visualization,
where f(x)∈Rn with n being the desired dimensionality, the
absolute value of the function f may be irrelevant while the
relative spread of the data are important. The user might provide
expert rules to define which data points should be close to each
other (must-link) or not (cannot-link). We can exploit this by
penalizing the deviation ofK from the given relationship label T :

EkQ(f)=‖(K−T).Q‖2F , (24)

where Qij = 1 if the label Tij is provided for a pair (i,j), and
Qij = 0 otherwise. Tij = 1 when f(xi) and f(xj) should
be close to each other in the embedding space, and Tij = 0
otherwise. A.B is element-wise multiplication of two matrices
A and B, and ‖A‖F is the Frobenius norm of A. In this case,
our new energy functional is constructed as follows:

Ek(f)=‖f−t‖2+λ2tr[K
>GK]+λ3EkQ(f), (25)



where we set the label t and the initial search solution f0 of the
optimization as the results of standard spectral embedding ob-
tained from a graph Laplacian-based algorithm: f0=[e2,...,en]
with ei being the i-th eigenvector of L. Since each output f(x)
is a vector, our relationship function is adapted accordingly:

k(f(x),f(x′))=exp

(
−‖f(x)−f(x′)‖2

σ2f

)
. (26)

Minimizing Eq. 24 over f is different from independently
minimizing it for each output dimension since the outputs are tied
across the dimensions through the relationship labels (Eq. 25),
and the regularizer (Eq. 12) is truly vector valued.

4. Experiments
We compare the performance of our explicit relationship regu-

larization (ERR, Eqs. 10 and 11) by adapting two existing implicit
relationship regularizations (IRR, Eqs. 3 and 4): classic graph
Laplacian [2] and state-of-the-art iterated graph Laplacian [20].
To our knowledge, no algorithms exist which attempt to explicitly
regularize relationships, even though they may implicitly attempt
to do so (Sec. 1.1). The purpose of our experiments is to show the
improvement that can come from explicit relationship regulariza-
tion, using standard and state-of-the-art approaches as evidence.
As such, we conducted a semi-supervised learning experiment
for pattern classification with a set of standard machine learning
databases. Code will be made available on the web.

4.1. Semi-supervised classification
We use seven standard binary classification datasets for semi-

supervised learning covering image digits (USPS), EEG signals
(BCI), newsgroup categories (Text, Pcmac, Real-sim) and news
reports (CCAT, GCAT) [4, 20]. We randomly divide each dataset
into three subsets: 50 labeled data points, 50 data points for vali-
dation for hyper-parameter selection, and the remaining unlabeled
data points are used for evaluation. We average error rates for 10
experiments with different sets of labeled examples. To demon-
strate sparsity for large datasets (Sec. 3.1), we use the 60,000 point
large MNIST dataset, with binary labels obtained in the same way
as for the USPS dataset [4]. Here, |NK|=200, while the number
of labeled and validation data points were fixed at 300 each. Due
to the large size of the problem, the iterated graph Laplacian was
not applicable for neither IRR nor ERR since taking the power
of a sparse (Laplacian) matrix tends to produce a denser matrix.

Binary classification allows direct comparison of regulariza-
tion performance and disregards multi-class combination method
effects. However, to gain an insight into multi-class classification
performance, we performed experiments with a 10-class dataset
of 2,000 data points sampled from MNIST. For training and vali-
dation, we used 50 labels for each class. To facilitate representing
the multi-class outputs, we learn a vector-valued function f and
the corresponding relationship function k as defined in Eq. 26.

For IRR, there are three parameters: σ2x, kN , the k-nearest
neighborhood size for the graph Laplacian construction (Eq. 13),
and regularization parameter λ1. For ERR (Eq. 10), there are
two more to be tuned: σ2f for the Gaussian similarity relationship

function k (Eq. 5), and regularization parameters λ2. We first find
bounds for σ2x, kN , and λ1 around the optimal for IRR; then, we
optimize σ2f and λ2 for ERR. This resulted in the total number of
parameter evaluations for ERR being only slightly larger than that
of IRR. ForRp

k (Eq. 11) there is an additional hyper-parameter
p that we fix at 2 throughout the entire set of experiments.

Performance For all but one dataset, the error rate of ERR
was lower than that of IRR when parameters were automatically
chosen (Table 1). This demonstrates the possible improvement of
ERR over IRR and supports our claim that explicitly exploiting
relationship information is useful. However, automatically
optimizing the parameters with a limited number of labeled points
can lead to overfitting (as observed in worse performance for
ERR on BCI). Automatic tuning of hyper-parameters is still an
open problem in semi-supervised learning where only a limited
number of labeled examples are provided.

We also report the performance of both algorithms when
best-case (BC) hyper-parameters are provided (odd row blocks),
and the performance difference between ERR and IRR is more
pronounced. This indicates that ERR can potentially lead to larger
improvements over IRR when the parameters are tuned properly
(e.g., through user interaction). If the error rate surface with
respect to the hyper-parameters is smooth, then the user could
decide the next search point based on the information gathered
thus far. Our preliminary experiments showed that the error rate
surface with respect to hyper-parameter is smooth. Accordingly,
the active sampling strategy can indeed be exercised (Table 1).

4.2. Spectral embedding

Our algorithm is a general regularizer for Riemannian man-
ifolds, and also supports explicit relationship labels. We use
dimensionality reduction and clustering applications to show this
with MNIST, full USPS, and standard UCI clustering datasets
(Diabetes, Iris, Wine, Breast Cancer Wisconsin (BCW), and
Pendigits). Must-link and cannot-link labels are based on ground
truths for selected pairs. Note that relationship labels are weak in
that having a positive or negative labelTij for a pair fi and fj does
not reveal the corresponding class information for either yi or yj.

In general, for unsupervised learning such as clustering and
dimensionality reduction, automatic tuning of hyper-parameters
is infeasible as there is no ground-truth information. Following
experimental convention [3], we set kN =10 and σ2x adaptively
based on the average Euclidean distance of a point to its kN
neighbors. In practice, the remaining hyper-parameters should
be user tuned. To facilitate this process, we reduce the number of
hyper-parameters to two, by first setting λ1=0 (see Eq. 25) and
tying λ2 and λ3 by a new parameter λ′2: We set the weight λ3
of relationship labels at a relatively large value 10 as these user
labels should be regarded as quasi-hard constraints. The overall
contribution of the sR relation labels is controlled by λ′2, replacing
λ2 by λ2/sR. Figure 2 shows that parameter tuning is feasible as
performance varies smoothly with respect to the parameter space.

Again, while the hyper-parameters might be tuned based on
user inspection in practice, to facilitate numerical evaluation for
each dataset we randomly selected sR=250 labels and optimized



Table 1. Classification performance as error rate for implicit and explicit relationship regularization (IRR and ERR), versus both graph Laplacian
(R̃h

k) and iterated graph Laplacian (R̃p
k) regularizers, with added best-case parameters (BC; Sec. 4.1). Bold marks the best results. The performance

improvement of ERR over IRR is calculated as the reduction of error rate (RER) in %.
USPS Text BCI Pcmac Real-sim CCAT GCAT MNIST MNIST

(multi-class)

Graph
Laplacian
R̃h
k

IRR 10.81 43.13 42.98 14.97 15.48 26.08 12.61 10.43 8.72
ERR 6.76 35.13 43.38 11.62 12.71 25.92 12.16 5.24 7.03
RER (%) 37.46 18.55 -0.93 22.38 17.89 0.06 3.57 49.79 19.38

IRR (BC) 9.59 37.91 40.03 13.61 14.32 20.80 8.90 8.68 7.04
ERR (BC) 4.44 22.39 38.95 8.90 10.23 19.63 8.39 4.90 6.14
RER (%) 53.70 40.94 2.70 34.61 28.56 5.63 5.73 43.58 12.78

Iterated
Graph

Laplacian
R̃p
k

IRR 4.80 29.05 41.74 11.95 12.36 24.20 10.97
N/A as
matrix

too
dense

7.46
ERR 3.71 23.84 42.35 10.38 11.52 21.31 9.48 6.74
RER (%) 22.71 17.94 -1.46 13.14 6.80 11.94 9.75 9.72

IRR (BC) 3.77 24.40 38.18 10.07 11.35 18.94 7.99 6.79
ERR (BC) 2.33 22.21 37.58 7.51 9.68 16.70 7.26 6.14
RER (%) 38.20 8.98 1.57 25.42 14.71 11.83 9.14 9.65

Figure 2. Clustering performance (error rate) of the proposed algorithm
on USPS dataset with hyper-parameters σ2

f and λ2 (λ′2∗SR) that vary
in multiplicative intervals 2 and 3, respectively.

σ2f and λ′2 based on their respective ground-truth error measures
(Sec. 4.2.1). These parameter values are fixed across all sR values.
For each value of sR, we randomly sampled half the number of
must-link and cannot-link labels, averaging error rates across 10
experiments. For comparison, we tuned the hyper-parameters of
all competing algorithms (as described shortly) for each dataset
and for each value of sR, based on the ground-truth error rate,
which is an advantage over our fixed parameters across sR values.

4.2.1 Clustering

From the optimized f∗, the final cluster label is assigned to each
data point by applying k-means clustering on f∗. Since k-means
optimization is non-convex, we run it ten times with random ini-
tialization and choose the result that minimizes the normalized cut
(NCut) [3] as it can be calculated without requiring any labels. We
compare with the original spectral clustering, and three state-of-
the-art algorithms which exploit explicit relationship labels: Con-
strained Clustering via Spectral Regularization (CCSR) [12] and
Flexible Constrained Spectral Clustering (CSP) [18] both optimize
spectral energy (R) but under hard and soft constraints respec-
tively (must-link and cannot-link), while Constrained 1-Spectral
Clustering (COSC) [14] minimizes a continuous (L1) relaxation
of the NCut under the same constraints. These algorithms signifi-

cantly outperform existing (relationship-) constrained approaches,
as well as unconstrained clustering algorithms [12, 14, 18].

One major difference between those algorithms and ours is that
they regularize f with constraints, while our algorithm explicitly
regularizes relationships. We also compare with the more classical
Spectral Learning algorithm (SL) that encodes the constraints into
the weight matrix in building the graph Laplacian [7]. For CCSR
and CSP, we used the code provided by the authors on their web-
sites. Since CSP is designed for binary clustering, we only report
the corresponding results of binary datasets (Diabetes, BCW). The
clustering error is defined by summing the occurrences of errors
for each cluster: a data points is counted as an error if its label is
different from the dominant label of the cluster to which it belongs.

Performance All algorithms that exploit relationship labels
significantly improved over original spectral clustering (Table 2).
The CSP and CCSR were especially good for BCW when the
number of labels sR is small. However, they failed to show steady
performance increases as sR increases. Further, for Diabetes,
both algorithms showed much higher error rates than other
algorithms. On average, SL showed better performance over CSP
and CCSR. However, for some datasets, it showed significant
error rate increases when sR is too large, which shows application
limitation. Overall, COSC and our algorithm (ERR) demonstrated
steady decreases of error rates as sR increases. However, except
for one case (BCW for sR=500), our algorithm outperformed
COSC by a large margin. For USPS, the error rates of COSC
stayed high even when sR = 1,000: in the original spectral
clustering result, multiple classes are merged into a single cluster,
which leads to a single class dominating in multiple clusters.
Classes 1 and 4 dominated in two clusters, respectively, and
accordingly, classes 6 and 10 are absorbed. While ERR restored
all classes when sR=500, COSC failed even when sR=1,000.

4.2.2 Dimensionality reduction

The target dimensionality n was set at 2 for all experiments, e.g.,
for visualization applications, though any dimensionality is possi-
ble. We measured the error rate based on leave-one-out 1-nearest



Table 2. Clustering performance as error rate for different constrained clustering algorithms.
# labels (sR) Diabetes BCW USPS MNIST Iris Wine Pendigits

Original 23.25 33.02 34.77 13.05 29.71 34.96 29.89

50

CSP 30.21 3.25 N/A — CSP is binary only
SL 34.80 34.99 18.96 30.72 1.80 32.64 15.69
CCSR 30.99 2.75 47.55 59.20 2.27 29.49 18.78
COSC 33.58 9.59 18.01 24.04 5.27 36.57 19.67
ERR 33.50 6.34 13.27 19.88 1.53 21.52 12.28

100

CSP 31.08 5.24 N/A — CSP is binary only
SL 34.01 32.11 18.11 29.16 1.47 23.65 14.23
CCSR 29.26 2.77 37.78 47.19 2.07 29.04 17.41
COSC 32.15 5.39 18.32 25.91 1.67 29.61 13.75
ERR 27.85 3.95 12.40 17.85 0.87 9.89 8.60

250

CSP 29.91 2.99 N/A — CSP is binary only
SL 28.26 12.91 5.17 17.39 0.13 2.42 6.37
CCSR 29.05 2.78 20.84 34.69 2.00 28.65 13.52
COSC 12.38 0.92 18.12 19.60 0.13 4.27 3.13
ERR 12.36 0.64 10.17 15.20 0.00 0.45 1.65

500

CSP 28.19 3.05 N/A — CSP is binary only
SL 17.77 6.25 8.24 12.98 0.00 0.00 5.81
CCSR 28.98 2.87 16.16 28.86 2.07 27.87 12.79
COSC 2.84 0.13 17.30 13.49 0.00 0.06 1.12
ERR 1.86 0.15 5.14 12.83 0.00 0.00 1.09

1,000

CSP 26.43 2.80 N/A — CSP is binary only
SL 1.54 0.44 15.40 24.67 0.00 0.00 28.24
CCSR 29.34 2.97 11.69 23.96 1.93 27.02 12.29
COSC 0.39 0.00 10.63 9.79 0.00 0.00 0.76
ERR 0.04 0.00 3.45 7.67 0.00 0.00 0.67

neighbor classification: For each point, we find its nearest neigh-
bor and use the corresponding retrieved class label as the predicted
label and measured the error rate. For comparison, we show the re-
sults of CCSR and SL. While both CCSR and SL were originally
developed for clustering, they first perform spectral embedding to
a given target dimension and then apply conventional clustering
therein. Their embedding parts can be used for dimensionality
reduction by choosing the target dimension accordingly.

Performance All algorithms improve over the original spectral
dimensionality reduction (Table 3), demonstrating the utility of
relationship labels. CCSR was especially good for BCW, but it did
not show noticeable improvement as sR increases. ERR and SL
both showed steady error rate decreases while ERR significantly
outperformed SL, demonstrating the utility of explicit relationship
regularization. Figure 3 shows an example embedding.

4.3. Complexity

For all experiments, following conventions, the graph
Laplacians are normalized. We set the number of conjugate
gradient (CG) steps to 50. This provides a moderate trade-off
between the performance and accuracy: While we observed a
steady increase in accuracy as the number of CG steps increased
for pattern classification experiments, the rate of increase dropped
significantly past 50. As indicated by the form of the energy
functional (Eq. 12), when sparsity in relationships is not enforced
(see Eq. 23), the time complexity of each gradient step is
cubic in the number of data points. For pattern classification
experiments with the USPS dataset (with 1500 data points), it took
approximately 1.6 seconds for 50 CG step on NVIDIA GeForce

Table 4. Performance vs. sparsity (|NK|) for MNIST subsets
(s=100,u=2,000). GPU optimization negates the need for sparsity
for these problem sizes.

|NK| 25 50 100 200 full ERR IRR

Error (%) 9.76 9.08 8.64 8.02 7.82 10.10
Time CPU (sec.) 3 10 21 38 35 1
Time GPU (sec.) - 3 -

680 GPU, and 25 seconds on Intel Xeon 3.6GHz CPU; while
the IRR took approximately 0.3 seconds on the same CPU: IRR
can be solved analytically, while ERR must be solved iteratively.

4.4. Sparsity
To gain an insight into the sparsity/performance trade-off,

we performed experiments on a small subset (u = 2,000) of
the MNIST dataset such that direct performance comparison
with dense regularization is possible (Table 4). Performance
degrades gracefully as |NK| decreases. For this small dataset, the
processing time of the sparse system when |NK|=200 is longer
than the full ERR due to the sparsification overhead. However,
the complexity grows roughly linearly with respect to u, and thus
sparsity makes ERR applicable to large-scale datasets. In Table 1,
we show the results of the full MNIST dataset with |NK|=200.

5. Discussion
We have only evaluated the binary relationship function k with

the single parameter σ2f , and different potential relationship func-
tion types could be explored. Further, we have only investigated



Table 3. Leave-one-out classification performance as error rate for different dimensionality reduction algorithms.
# labels (sR) Diabetes BCW USPS MNIST Iris Wine Pendigits

Original 46.35 9.37 29.29 34.48 4.67 28.09 15.92

50
SL 39.40 6.50 28.68 33.29 3.60 31.35 12.88
CCSR 36.59 3.91 42.62 33.70 2.73 34.55 9.04
ERR 33.95 4.77 5.34 23.29 3.07 24.49 2.80

100
SL 37.49 7.13 27.93 33.15 3.67 30.28 13.04
CCSR 37.21 4.04 38.39 34.98 2.80 33.60 8.81
ERR 30.63 4.10 5.35 22.41 2.33 16.74 3.07

250
SL 36.93 7.10 25.85 31.05 1.87 20.34 11.45
CCSR 37.38 4.09 29.24 37.43 3.33 33.09 8.92
ERR 24.92 3.41 5.30 10.43 0.93 9.38 2.60

500
SL 24.88 3.63 22.48 27.02 0.60 2.58 10.82
CCSR 37.72 4.07 32.27 46.42 3.33 31.57 9.02
ERR 16.39 1.65 5.11 6.62 0.27 0.90 2.58

1,000
SL 11.78 1.39 17.25 22.68 0.00 0.11 10.03
CCSR 38.06 4.04 36.93 47.25 3.33 31.35 9.53
ERR 9.53 0.79 4.90 6.31 0.00 0.00 2.20
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Figure 3. Embedding results for full 10-class USPS dataset (sR=100); plots show only 2,000 data points for better visibility. Left: Spectral embedding
(t in Eq. 25). Middle: Minimizing 1) deviation from t; 2) training error for relationship labels (Eq. 24), and 3) conventional graph Laplacian regularization
energy (EkM andR: Eqs. 24 and 18 with λ2=0). Right: Our proposal (EkM andRk: Eq. 25). Error rates (left to right): 28.30, 27.53, and 0.63.

binary relationship functions, and n-ary relationship functions
are possible. In this case, theK matrix in Eq. 18 is replaced by a
tensor, and the problem complexity increases, though it may still
be possible to handle these cases by enforcing sparsity (Sec. 3.1).

For the specific case of binary relationship functions regu-
larized by the graph Laplacian (which corresponds to pair-wise
regularization), our regularization energy functional (Eq. 23) can
be regarded as a construction of a ternary relationship function:
One can define a ternary clique as a summand of Eq. 23:

q(fi,fj,fk)=(Kij−Kik)
2Wjkgijgik. (27)

In this way, our algorithm can be viewed as a special case of an
MRF. While, in general, the optimization with a ternary relation-
ship function is computationally very demanding, the asymmetric
roles of three arguments in our clique (see the last paragraph of
Sec. 2.2) leads to a computationally affordable algorithm. In this
respect, one of our main contributions is a method to construct
a high-order clique from low-order cliques and the corresponding
practical algorithm for semi-supervised learning.

In our semi-supervised learning experiments, we chose
hyper-parameters based on separate validation sets. Heuristics can

help set some hyper-parameters, e.g., for spectral embedding, we
set σ2x based on the average Euclidean distance of a point to its
kN neighbors (Sec. 4.2). For USPS, the corresponding average
clustering error rate was around 20% higher than when varying
and manually selecting σ2x. This suggests that the heuristic can
trade accuracy with hyper-parameter optimization time.

6. Conclusion

We have investigated explicit relationship regularization,
which, in addition to regularizing the function in semi-supervised
learning, now regularizes the relationships between function eval-
uations through smooth relationship functions. This approach im-
proves performance by a large margin in semi-supervised classifi-
cation and in constrained spectral clustering applications, and facil-
itates a related algorithm in semi-supervised dimensionality reduc-
tion. We believe semi-supervised learning and constrained cluster-
ing algorithms will increase in importance in vision, e.g., recent
works in pose estimation [17], and video segmentation [8]. Future
work should consider what role our explicit relationship regulariza-
tion plays on the effect of the statistical model, e.g., error bound.



Acknowledgements
Kwang In Kim thanks EPSRC EP/M00533X/1 and

EP/M006255/1, James Tompkin and Hanspeter Pfister thank
NSF CGV-1110955, and James Tompkin and Christian Theobalt
thank the Intel Visual Computing Institute.

References
[1] S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and

R. Szeliski. Building Rome in a day. In Proc. ICCV, 2009. 1
[2] M. Belkin and P. Niyogi. Towards a theoretical foundation

for Laplacian-based manifold methods. Journal of Com-
puter and System Sciences, 74(8):1289–1308, 2005. 2, 4, 5

[3] T. Bühler and M. Hein. Spectral clustering based on the
graph p-Laplacian. In Proc. ICML, pages 81–88, 2009. 5, 6

[4] O. Chapelle, B. Schölkopf, and A. Zien. Semi-Supervised
Learning. MIT Press, Cambridge, MA, 2006. 2, 5

[5] S. Ebert, D. Larlus, and B. Schiele. Extracting structures
in image collections for object recognition. In Proc. ECCV,
pages 720–733, 2010. 1

[6] M. Hein, J.-Y. Audibert, and U. von Luxburg. From graphs
to manifolds - weak and strong pointwise consistency of
graph Laplacians. In Proc. COLT, pages 470–485, 2005. 4

[7] S. D. Kamvar, D. Klein, and C. D. Manning. Spectral
learning. In Proc. IJCAI, pages 561–566, 2003. 6

[8] A. Khoreva, F. Galasso, M. Hein, and B. Schiele. Learning
must-link constraints for video segmentation based on
spectral clustering. In Proc. GCPR, pages 701–712, 2014. 8

[9] K. I. Kim, J. Tompkin, M. Theobald, J. Kautz, and
C. Theobalt. Match graph construction for large image
databases. In Proc. ECCV, pages 272–285, 2012. 1

[10] J. Lafferty, A. McCallum, and F. Pereira. Conditional ran-
dom fields: probabilistic models for segmenting and labeling
sequence data. In Proc. ICML, pages 282–289, 2001. 2

[11] J. M. Lee. Riemannian Manifolds- An Introduction to
Curvature. Springer, New York, 1997. 2, 3, 4

[12] Z. Li, J. Liu, and X. Tang. Constrained clustering via spectral
regularization. In Proc. CVPR, pages 421–428, 2009. 1, 6

[13] M. McPherson, L. Smith-Lovin, , and J. M. Cook. Birds
of a feather: Homophily in social networks. Annual Review
of Sociology, 27:415–444, 2001. 1

[14] S. Rangapuram and M. Hein. Constrained 1-spectral
clustering. JMLR W&CP (Proc. AISTATS), 22:1143–1151,
2012. 1, 6

[15] B. Schölkopf and A. Smola. Learning with Kernels. MIT
Press, Cambridge, MA, 2002. 2

[16] F. Steinke, M. Hein, and B. Schölkopf. Nonparametric
regression between general Riemannian manifolds. SIAM
Journal on Imaging Sciences, 3(3):527–563, 2010. 2, 3

[17] D. Tang, T.-H. Yu, and T.-K. Kim. Real-time articulated
hand pose estimation using semi-supervised transductive
regression rorests. In Proc. ICCV, pages 3224–3231, 2013.
1, 8

[18] X. Wang and I. Davidson. Flexible constrained spectral
clustering. In Proc. SIGKDD, pages 563–572, 2010. 1, 6

[19] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and
B. Schölkopf. Learning with local and global consistency.
In NIPS, pages 1330–328, 04. 1

[20] X. Zhou and M. Belkin. Semi-supervised learning by
higher order regularization. JMLR W&CP (Proc. AISTATS),
pages 892–900, 2011. 2, 4, 5

[21] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised
learning using Gaussian fields and harmonic functions. In
Proc. ICML, pages 912–919, 2003. 1


