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The alignment of a set of objects by means of transformations plays an im-
portant role in computer vision. The case of aligning only two objects is
known as Absolute Orientation Problem (AOP) [5] or Procrustes Analysis
and can be solved globally. However, when multiple objects are considered,
which is known as Generalised Procrustes Analysis (GPA), usually iterative
methods are used. In practice the iterative methods perform well if the rela-
tive transformations between any pair of objects are free of noise. However,
if only noisy relative transformations are available (e.g. due to missing data
or wrong correspondences) the iterative methods may fail.

In this paper a method for denoising the set of pairwise relative trans-
formations is presented. Previously, Singer et al. [2, 4, 6] have presented a
solution for denoising the set of orthogonal transformation matrices. How-
ever, in this work we consider the more general case of invertible linear
transformations. For that we make use of the fact that the noise-free trans-
formations must fulfil the transitive consistency condition, i.e. transforming
object A to B and B to C must be identical to directly transforming A to C.

The invertible pairwise transformation matrices Ti j ∈Rd×d between all
k objects can be arranged into a single large matrix W, i.e.
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In the case of transitively consistent transformations the matrix W can
be factorised as W = U1U2, with

U1 =


T1?
T2?

...
Tk?

 and U2 =
[
T−1

1? ,T
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2? , . . . ,T

−1
k?

]
,

where ? denotes some reference coordinate frame from which there are Ti?
transformations such that Ti j = Ti?T? j for all i, j. We demonstrate that
this factorisation can be retrieved from the d-dimensional null space of the
matrix Z = W− kI.

For the case of a noisy observation of W, the least-squares approxima-
tion of the d-dimensional null space is considered instead, resulting in the
set of synchronised transformations that are transitively consistent.

Our simulations demonstrate that for noisy pairwise transformations the
error to ground truth transformations can be reduced by applying the pro-
posed synchronisation method. Furthermore, we apply the method to solve
the Generalised Procrustes Problem (GPP) for the case of missing data as
well as for the case of wrong correspondence assignments. A subset of the
simulations for solving the GPP in the case of wrong correspondence as-
signments using the 2D fish shapes from the Chui-Rangarajan data set [3]
are shown in Fig. 1. Various methods for solving the GPP are evaluated. In
the reference-based method one shape is randomly selected as reference and
all other shapes are aligned with the reference. For the iterative mean shape-
based method the initial reference shape is selected randomly and then the
mean shape is iteratively updated. In the synchronisation-based solution of
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the GPP all k2 pairwise AOPs are solved first, followed by the synchronisa-
tion of the resulting transformations using the proposed method in order to
aggregate all information contained in the set of pairwise transformations.
Additionally, the stratified GPA method presented in [1] is evaluated for
solving the GPP. For the missing data experiments our method outperforms
the other approaches since it is the only one that is able to make use of the
information contained in all pairwise transformations.
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Figure 1: Left: Example of the average shape error for the reference-based
(green), iterative mean shape-based (black), synchronisation-based (blue)
and stratified (red) method for solving the GPP for a fraction ν of wrong
correspondences at a particular level of deformation (top) or noise (bottom).
Shown is the average shape error for 500 runs of disturbing correspondence
assignments. Right: Examples of possible assignments between a pair of
shapes for different values of wrong correspondences ν . In order to keep
the visualisation as coherent as possible, the wrong correspondences (red
lines) and the correct correspondences (green lines) are shown separately.
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