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Abstract

The alignment of a set of objects by means of transfor-
mations plays an important role in computer vision. Whilst
the case for only two objects can be solved globally, when
multiple objects are considered usually iterative methods
are used. In practice the iterative methods perform well
if the relative transformations between any pair of objects
are free of noise. However, if only noisy relative transfor-
mations are available (e.g. due to missing data or wrong
correspondences) the iterative methods may fail.

Based on the observation that the underlying noise-free
transformations can be retrieved from the null space of a
matrix that can directly be obtained from pairwise align-
ments, this paper presents a novel method for the synchro-
nisation of pairwise transformations such that they are tran-
sitively consistent.

Simulations demonstrate that for noisy transformations,
a large proportion of missing data and even for wrong cor-
respondence assignments the method delivers encouraging
results.

1. Introduction

The alignment of a set of objects by means of transfor-
mations plays an important role in the field of computer
vision and recognition. For instance, for the creation of
statistical shape models (SSMs) [5] training shapes are ini-
tially aligned for removing pose differences in order to only
model shape variability.

The most common way of shape representation is by en-
coding each shape as a point-cloud. In order to be able to
process a set of shapes it is necessary that correspondences

between all shapes are established. Whilst there is a vast
amount of research in the field of shape correspondences
(for an overview see [11, 18]), in this paper we focus on the
alignment of shapes and we assume that correspondences
have already been established.

The alignment of two objects by removing location,
scale and rotation is known as Absolute Orientation Prob-
lem (AOP) [13] or Procrustes Analysis [8]. For the AOP
there are various closed-form solutions, among them meth-
ods based on singular value decomposition (SVD) [1, 16];
based on eigenvalue decomposition [13]; based on unit
quaternions [12] or based on dual quaternions [19]. A com-
parison of these methods [6] has revealed that the accuracy
and the robustness of all methods are comparable.

The alignment of more than two objects is known as
Generalised Procrustes Analysis (GPA). Whilst a computa-
tionally expensive global solution for GPA in two and three
dimensions has been presented in [15], the most common
way for solving the GPA is to align the objects with a ref-
erence object. However, fixing any of the objects as ref-
erence induces a bias. An unbiased alternative is to align
all objects with the adaptive mean object as reference. An
iterative algorithm then alternatingly updates the reference
object and estimates the transformations aligning the ob-
jects. The iterative nature of these methods constitutes a
problem if the relative transformation between any pair of
objects is noisy. This is for example the case if data is miss-
ing, correspondences are wrong or if the transformations are
observed by independent sensors (e.g. non-communicating
robots observe each other). Noisy relative transformations
can be characterised by transitive inconsistency, i.e. trans-
forming A to B and B to C might lead to a different result
than transforming A directly to C.

This paper presents a novel method for synchronising



the set of all pairwise transformations in such a way that
they globally exhibit transitive consistency. Experiments
demonstrate the effectiveness of this method in denoising
noisy pairwise transformations. Furthermore, using this
novel method the GPA is solved in an unbiased manner in
closed-form, i.e. non-iterative. Transformation synchroni-
sation is applied to solve the GPA with missing data as well
as with wrong correspondence assignments and results in
superior performance compared to existing methods.

Our main contribution is a generalisation of the tech-
niques presented by Singer et al. [3, 9, 10, 17], who have
introduced a method for minimising global self-consistency
errors between pairwise orthogonal transformations based
on eigenvalue decomposition and semidefinite program-
ming. With permutation transformations being a subset of
orthogonal transformations, in [14] the authors demonstrate
that the method by Singer et al. is also able to effectively
synchronise permutation transformations for globally con-
sistent matchings.

In our case, rather than considering the special case of or-
thogonal matrices, we present a synchronisation method for
invertible linear transformations. Furthermore, it is demon-
strated how this method can be applied for the synchro-
nisation of similarity, euclidean and rigid transformations,
which are of special interest for the groupwise alignment of
shapes.

Whilst the proposed synchronisation method is applica-
ble in many other fields where noisy pairwise transforma-
tions are to be denoised (e.g. groupwise image registration
or multi-view registration), in this paper GPA is used as il-
lustrating example.

2. Methods

For the presentation of our novel transformation syn-
chronisation method the notation and some foundations are
introduced first. Subsequently, a formulation for the case of
perfect information is given. Motivated by these elabora-
tions, a straightforward extension to handle noisy pairwise
transformations is presented. Finally, various types of trans-
formations are discussed.

2.1. Notation and Foundations

Xi,Xj ∈ Rn×d are matrices representing point-clouds
with n points in d dimensions where in the following all Xi

are simply referred to as point-clouds. Let I be the identity
matrix and 0 be the vector containing only zeros, both hav-
ing appropriate dimensions according to their context. The
Frobenius norm is denoted by ‖ · ‖F . Let Tij ∈ Rd×d be
an invertible transformation matrix aligning point-cloud Xi

with Xj (for all i, j = 1, . . . , k), where Tij = T−1ji . Fur-
thermore, T = {Tij}ki=1,j=1 is the set of all k2 pairwise
transformations.

A desirable property of the set of transformations T is that
it complies with the following transitive consistency condi-
tion:

Definition 1. The set of relative transformations T is said
to be transitively consistent if

TijTjl = Til for all i, j, l = 1, . . . , k .

Definition 1 states that the transformation from i to j
followed by the transformation from j to l must be the same
as directly transforming from i to l.

Lemma 1. The set of relative transformations T is tran-
sitively consistent if and only if there is a set of invertible
transformations {T̄i}ki=1 such that

Tij = T̄iT̄
−1
j for all i, j = 1, . . . , k .

Proof. For the sake of completeness a proof is provided.
“⇐”: Transitive consistency of T follows directly from the
definition Tij = T̄iT̄

−1
j , since for all i, j, l = 1, . . . , k it

holds that

Til = T̄iT̄
−1
l = T̄iIT̄

−1
l (1)

= T̄i(T̄
−1
j T̄j)T̄

−1
l (2)

= (T̄iT̄
−1
j )(T̄jT̄

−1
l ) (3)

= TijTjl . (4)

“⇒”: In the rest of the proof we direct our attention towards
the necessity of the existence of the T̄i transformations.

First of all, if the transformations in T are transitively
consistent

Tii = I for all i = 1, . . . , k . (5)

This follows by the fact that the Tii needs to be invertible
while satisfying, by Definition 1, that TiiTii = Tii.

Let T̄′i = Ti1 for all i. Now we show that T̄′i are such
T̄i matrices we seek. Since, by using (5), T̄′1 = I, we can
write Ti1 = T̄′iI = T̄′i(T̄

′
1)−1.

Now for any Tij , we can use that

T1iTij = T1j . (6)

Thus,

Tij = T−11i T1j = Ti1T
−1
j1 = T̄′i(T̄

′
j)
−1 . (7)

2.2. Perfect Information

Due to Lemma 1, there is a reference coordinate frame,
denoted by ?, from which there are Ti? transformations
such that Tij = Ti?T?j for all i, j. Note that the reference



coordinate frame is merely used as a tool for deriving our
method and it is irrelevant what the actual reference frame
is. Let us introduce

W =
[
Tij

]
=

T11 · · · T1k

...
. . .

...
Tk1 · · · Tkk

 (8)

=

T1?T?1 · · · T1?T?k

...
. . .

...
Tk?T?1 · · · Tk?T?k

 (9)

=

T1?T
−1
1? · · · T1?T

−1
k?

...
. . .

...
Tk?T

−1
1? · · · Tk?T

−1
k?

 (10)

= U1U2 , (11)

where

U1 =


T1?

T2?

...
Tk?

 and U2 =
[
T−11? ,T

−1
2? , . . . ,T

−1
k?

]
.

Using this notation, finding either U1 or U2 (up to an in-
vertible linear transformation) gives the transitively consis-
tent transformations.

Definition 2. Let A ∈ Rp×q . The set

im(A) = {Ax | x ∈ Rq}

is the column space of A and the set

ker(A) = {x ∈ Rq |Ax = 0}

is the null space of A.

Note that due to the invertability of Ti? (for all
i = 1, . . . , k) it holds that the matrix U1 has rank d and
thus the dimensionality of the column space im(U1) of U1

is exactly d.

Proposition 1. Let Z = W − kI. The linear subspace
ker(Z) has dimension d and is equal to im(U1).

Proof. First it is shown that the columns of U1 are con-
tained in the null space of Z, i.e. im(U1) ⊆ ker(Z), and
then it is shown that the null space of Z has exactly dimen-
sion d.

Note that U2U1 = kI, which we will make use of
shortly. Multiplication of U1 on the right to W = U1U2

gives

WU1 = U1U2U1 = U1kI (12)
⇔ WU1 = kU1 (13)
⇔ WU1 − kU1 = 0 (14)
⇔ (W − kI)U1 = 0 (15)
⇔ ZU1 = 0 with Z = W − kI . (16)

From (16) it can be seen that all the columns of U1 are
contained in the null space of Z, so im(U1) ⊆ ker(Z).

However, it still remains to be shown that the dimension-
ality of ker(Z) is exactly d, i.e. im(U1) spans the entire null
space of Z and not just a part of it. This is done by showing
that there are no non-zero vectors x that are not contained
in im(U1) but are contained in ker(Z).

Formally this is expressed by the requirement that the set

A = {x ∈ Rkd | x 6= 0,x /∈ im(U1),x ∈ ker(Z)}

is empty. Suppose now that A is not empty, so it contains
the element x ∈ Rkd. Using the orthogonal decomposition
theorem, the vector x can be rewritten as x = xker + xim,
where xker ∈ ker(UT

1 ) and xim ∈ im(U1). The definition
of A states that x /∈ im(U1), which implies that xker 6= 0.
Further, the definition of A states that

x ∈ ker(Z) (17)
⇔ Zx = 0 (18)
⇔ Z(xker + xim) = 0 (19)
⇔ Zxker + Zxim = 0 . (20)

Per definition xim ∈ im(U1) ⊆ ker(Z), so it follows that
Zxim = 0, leading to

Zxker = 0 . (21)

Multiplication of xT
ker on the left gives

xT
kerZxker = 0 (22)

⇔ xT
ker(U1U2 − kI)xker = 0 (23)

⇔ xT
kerU1U2xker − kxT

kerxker = 0 (24)

⇔ xT
kerU

T
2 UT

1 xker − kxT
kerxker = 0 . (25)

Per definition xker ∈ ker(UT
1 ), so UT

1 xker = 0, leading to

xT
kerxker = 0 (26)

⇔ xker = 0 . (27)

Equation (27) is a contradiction to xker 6= 0, thus, the set A
is empty.

Proposition 1 states that U1 in (16) can, up to an in-
vertible linear transformation, be retrieved by finding the
d-dimensional null space of Z. Let Z = UΣVT be the
singular value decomposition (SVD) of Z. The d columns
of V corresponding to the zero singular values span ker(Z)
and give a solution to (16).

As we are only able to retrieve the transformations Ti?

in the blocks of U1 up to invertible linear transformations,



w.l.o.g. we create a new version of U1, call it U′1, with the
first d× d block being equal to the identity, as

U′1 = U1T
−1
1? =


T1?T

−1
1?

T2?T
−1
1?

...
Tk?T

−1
1?

 . (28)

2.3. Noisy Pairwise Transformations

Up until this point, the matrix U1 is obtained under
perfect information, i.e. the transitivity condition in Defi-
nition 1 holds for all Tij transformations contained in the
blocks of W. However, we are interested in the case when
the transitivity condition does not hold due to measurement
noise. Assume now that we have a noisy observation of
W, denoted as W̃. Also, let the noisy version of Z be
Z̃ = W̃−kI. Now, in general it is not the case that the null
space of Z̃ is d-dimensional. Instead, the least-squares ap-
proximation of the d-dimensional null space is considered,
which leads to the following optimisation problem:

Problem 1. Least-squares Transformation Synchronisation

minimise
T̂1?,...,T̂k?

‖Z̃Û1‖2F

subject to uT
i uj = 0 for all i 6= j

‖ui‖ = 1 for all i

Û1 =
[
u1, . . . ,ud

]
∈ Rkd×d .

The rank-d approximation of the null space of Z̃ can be
retrieved using the SVD of Z̃ = UΣVT . In this case the
columns of V corresponding to the d smallest singular val-
ues span the rank-d approximation of the null space of Z̃,
giving Û1, the estimate for U1. By using (28), Û′1 can be
retrieved from Û1.

2.4. Affine Transformations in Homogeneous Coor-
dinates

In this section it is shown that the method is also appli-
cable for invertible affine transformations, rather than in-
vertible linear transformations. This is done by represent-
ing the d-dimensional affine transformations Tij by using
(d+1)×(d+1) homogeneous matrices.
Each affine transformation Tij can be written as

Tij =

[
Aij 0
tij 1

]
, (29)

where Aij is the (invertible) linear d × d transformation
matrix and tij is the d-dimensional row vector representing
the translation. The inverse of Tij is given by

T−1ij =

[
A−1ij 0

−tijA
−1
ij 1

]
. (30)

Similar to the linear case described in (8), the matrix W
is constructed from all Tij . It is assumed that the matrix
W̃, corresponding to the noisy observation of W, contains
blocks that are proper affine transformations, i.e. the last
column of each block is

[
0 1

]T
.

A simple way to ensure that the synchronised transfor-
mations are affine transformations in homogeneous coor-
dinates is to add the row vector z =

[
z z . . . z

]
∈

Rk(d+1), with z =
[
0 0 . . . 0 1

]
∈ Rd+1, to the

matrix Z̃. By adding the vector z to Z̃, the vector zT is
removed from the null space of Z̃. Using this approach, a
solution is then found by solving Problem (1) with the up-
dated Z̃. Then the resulting Û′1 gives an estimate of the first
d columns of T̂i? (i = 1, . . . , k) and these are the columns
we seek.

2.5. Similarity Transformations

Similarity transformations are transformations that allow
for translations, isotropic scaling, rotations and reflections.
To retrieve similarity transformations, the estimates of the
synchronised affine transformations T̂i? (i = 1, . . . , k) are
determined first. The translation component t̂i? of T̂i? can
directly be extracted from T̂i? since it has the structure pre-
sented in (29). To obtain the scaling factor and the orthog-
onal transformation, the linear component Âi? is factorised
using SVD, resulting in Âi? = Ui?Σi?V

T
i?. The orthogo-

nal component Q̂i? is then given by

Q̂i? = Ui?V
T
i? , (31)

and the isotropic scaling factor ŝi? is given by

ŝi? =

 d∏
j=1

|(σi?)jj |

 1
d

, (32)

where (σi?)jj is the j-th element on the diagonal of Σi?.

Remark 1. It can be shown that retrieving the orthogonal
component as presented in eq. (31) is the least-squares so-
lution to the projection onto the set of orthogonal matrices.
However, in eq. (32) the isotropic scaling factor is retrieved
as the geometric mean of the individual axis-aligned scaling
factors. The least-squares solution to the projection onto
the set of similarity transformations is given by the arith-
metic mean, i.e. ŝlsq

i? = 1
d

∑d
j=1 |(σi?)jj |.

2.6. Euclidean Transformations

Similarity transformations without isotropic scaling are
called euclidean transformations. To obtain euclidean trans-
formations, the similarity transformations are extracted and
the scaling factors ŝi? (for all i = 1, . . . , k) are set to 1.



2.7. Rigid Transformations

Euclidean transformations without reflections are called
rigid transformations. Rigid transformations can be ob-
tained by ensuring that the determinant of the rotational
component Q̂i? described in (31) equals 1. This can be
achieved by setting

Q̂i? = Ui?Di?V
T
i?, with (33)

Di? = diag(1, . . . , 1,det(VT
i?Ui?)) . (34)

3. Experiments
By generating ground truth data and adding Gaussian

noise to it, we first compare the error of the synchronised
transformations using our method to the error of the unsyn-
chronised transformations. Furthermore, the transforma-
tion synchronisation method is applied for solving the Gen-
eralised Procrustes Problem with missing points and with
wrong correspondence assignments.

3.1. Noisy Transformations

In this section it is described how the ground truth trans-
formations are generated, how noisy versions thereof are
generated and eventually results of the transformation syn-
chronisation method are presented.

3.1.1 Ground Truth Transformations

For the analysis of the performance of our method we gen-
erate a set of random transformations T? = {Ti?}ki=1, that
are used in turn to generate the transitively consistent set of
pairwise transformations T = {Tij = Ti?T

−1
j? }ki=1,j=1,

serving as ground truth for the evaluation. The generation
of T? is described in the following.

The dot-notation is used to illustrate that ẋ is a random
variable with a particular probability distribution. For gen-
erating the set T?, we assume that the point-clouds that lead
to the transformations have some structural similarity, i.e.
the transformations are not entirely random. In particular,
the scaling factors, the translation components and the lin-
ear part of the transformation are restricted in the sense that
they cannot be arbitrary. However, arbitrary orientations in
d-dimensional space are allowed for.

The set T? contains the elements Ti? (i = 1, . . . , k),
which are samples of

Ṫ =

[
ṡQ̇Ṅ 0

ṫ 1

]
, (35)

where ṡ ∼ U(0.5, 1.5) is a scaling factor and
ṫ ∼ U(−2.5, 2.5)d is a translation, with U(a, b)d de-
noting the d-dimensional uniform distribution having the
open interval (a, b)d as support. Samples of the d×d
random rotation matrix Q̇ are drawn by extracting the

rotational component of a non-singular random matrix as
described in (31). The d×d random noise matrix Ṅ is
given by Ṅ = I + ε̇, where ε̇ ∼ N (0, 0.12)d×d is a d×d
random matrix with each element having univariate normal
distribution N (0, 0.12). The purpose of creating the noise
in the way using the random matrix Ṅ is to restrict the
linear component in the transformation and thus to avoid
ill-conditionedness with very high probability.

Depending on the type of transformation that is evalu-
ated, the parameters of T? have different properties, which
are summarised in Table 1.

Q̇ ṫ ṡ Ṅ

linear |det | = 1 = 0 ∼ U(0.5, 1.5) ∼ I+ ε
affine | det | = 1 ∼ U(0.5, 1.5)d ∼ U(0.5, 1.5) ∼ I+ ε
similarity | det | = 1 ∼ U(0.5, 1.5)d ∼ U(0.5, 1.5) = I
euclidean | det | = 1 ∼ U(0.5, 1.5)d =1 = I
rigid det = 1 ∼ U(0.5, 1.5)d =1 = I

Table 1. Properties of components of random transformations for
different types of transformations generated according to (35).

Once the ground truth set T of transitively consis-
tent transformations has been established, a noisy version
thereof is synthetically created, as described in the next sec-
tion.

The error e(T 1, T 2) between two sets of pairwise trans-
formations T 1 = {T1

ij}ki,j=1 and T 2 = {T2
ij}ki,j=1 is de-

fined as

e(T 1, T 2) =
1

k2

k∑
i,j=1

‖T1
ij −T2

ij‖F . (36)

3.1.2 Additive Gaussian Noise

The set of noisy pairwise transformations T̃ N is created by
adding to each element of the matrix Tij a sample from
N (0, σ2), which is conducted for all matrices Tij ∈ T
with i 6= j. In the case of homogeneous transformation
matrices Tij , no noise is added to the last column, which
shall always be (0 1)T .

Results of the simulations are shown in Fig. 1. The first
row of graphs show that for all types of transformations the
error of synchronised transformations is smaller than the er-
ror of the unsynchronised transformations and that the slope
of the error in the synchronised case is smaller than in the
unsynchronised case. In the second row it can be seen that,
even with a high amount of noise (σ = 0.5), the error of
the synchronised transformations decreases with an increas-
ing number of objects k. As anticipated, with increasing k
there is more information available, directly resulting in a
lower error. The last row of graphs shows that increasing the
dimensionality results in an increasing error; however, the
error of the synchronised transformations increases slower
than for the unsynchronised ones.
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Figure 1. Error for additive normal noise T̃ N for different configurations as specified in the graph title with one varying parameter (hori-
zontal axis). Each row of graphs shows a particular varying parameter (σ, k and d from top to bottom) and each column of graphs shows a
particular transformation type (affine, linear, similarity, euclidean, rigid, from left to right). The error as defined in (36) of the unsynchro-
nised noisy transformations is shown in green and of the synchronised transformations in blue. Shown is the average error of 100 randomly
generated sets of ground truth transformations, where for each ground truth transformation 20 runs of adding noise have been performed,
resulting in a total of 2000 simulations per graph.

3.2. Generalised Procrustes Analysis

In addition to evaluating the synchronisation of noisy
pairwise transformations we have applied our method for
solving the Generalised Procrustes Problem (GPP), which
is done on the one hand with missing data and on the other
hand with wrong correspondence assignments. For both
simulations the 2D fish shapes from the Chui-Rangarajan
data set [4] with different levels of deformation and noise
have been used (refer [4] for more details). For each level
of deformation and noise the data set contains K = 100
shapes, each comprising n = 98 points in d = 2 dimen-
sions.

Finding the similarity transformation that best aligns
two shapes, which is a subroutine for the evaluated
reference-based, the iterative mean shape-based and the
synchronisation-based method, is performed by an AOP im-
plementation with symmetric scaling factors [13]. In the
reference-based solution of GPP one shape is randomly se-
lected as reference and all other shapes are aligned with
the reference. For the iterative mean shape-based method
the initial reference shape is selected randomly and then the
mean shape is iteratively updated. In the synchronisation-
based solution of GPP all k2 pairwise AOPs are solved first,
followed by the synchronisation of the resulting transforma-
tions in order to aggregate all information contained in the
pairwise transformations. Additionally, the stratified GPA

method proposed in [2] is evaluated for solving the GPP. In
our experiments we have observed that by using the strati-
fied GPA method the linear part of the resulting transforma-
tions may collapse to the zero matrix; in order to enable a
comparison with the other methods in these cases the linear
part of the transformation has simply been set to the identity
matrix.

In the missing data experiments as well as the wrong
correspondence experiments for each single run k = 30 out
of K = 100 shapes are randomly selected. For the experi-
ments in the missing points case the missing points are sim-
ulated by discarding points according to a given probabil-
ity. For the experiments with wrong correspondences the
correct correspondences are randomly disturbed in order to
simulate wrong correspondences.

In contrast to solving the AOPs, in both experiments
the computation of the error is performed using the origi-
nal shape (i.e. with all points and with perfect correspon-
dences). With that we investigate up to which amount re-
covering the original shapes from corrupt shape data is pos-
sible. The average shape error of a set of shapes X =

{Xi}ki=1 is defined as e(X ) = 1
k2

∑k
i,j=1 ‖Xi −Xj‖F .

3.2.1 Missing Points

In every run, additionally to randomly selecting 30 out of
100 shapes, each data point of a shape is considered to
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Figure 2. Average shape error for the reference-based (green), iterative mean shape-based (black), synchronisation-based (blue) and strat-
ified (red) method for solving the GPP with missing data. The horizontal axis shows the probability η that a point is considered missing.
At the top of each graph three shapes according to the particular level of deformation or noise are depicted. Shown is the average shape
error for 500 draws of missing data in each graph. In every run k = 30 out of K = 100 shapes are randomly selected, where each shape
comprises n = 98 points in d = 2 dimensions.

be missing with probability η. As the implemented meth-
ods solve the AOP only for common points in each pair of
shapes, values for η larger than 0.7 have not been investi-
gated because with η > 0.7 the cases that the number of
common points in a pair of shapes is less than d = 2 oc-
cur too frequently (for d-dimensional data, there must be at
least d points in each shape in order to result in a system
that is not under-determined). Also, for η ≤ 0.7 it is possi-
ble that the number of common points in a pair of shapes is
less than d = 2; in these cases the draw of missing data is
simply repeated.

In Fig. 2 the resulting error of the reference-based, the
iterative mean shape-based, the synchronisation-based and
the stratified solution of the GPP with missing data are
shown for different levels of deformation and noise. It can
be seen that even with an increasing amount of missing data,
when using the synchronisation-based method the error in-
creases only slightly, whilst the error of the reference-based
method increases significantly with a larger amount of miss-
ing points. With respect to the error, the transformation syn-
chronisation method performs only marginally better than
the iterative mean shape-based method and the stratified
method. However, the average runtimes for solving a single
GPP instance was 0.007 s for the reference-based method,
0.162 s for the synchronisation-based method, 1.932 s for
the iterative mean shape-based method and 2.265 s for the
stratified method, illustrating that our method performs sig-
nificantly better than all other methods when taking runtime

and error into account at the same time.

3.2.2 Wrong Correspondence Assignments

Additionally to the case of missing points, we have applied
our method to solve the GPP with wrong correspondence
assignments between shapes. In order to mimic practical
applications, where it is frequently the case that the true
correspondences are unknown and thus it must be assumed
that wrong correspondences are present, we do not make
any efforts to correct these wrong correspondences (such as
using RANSAC [7] or permutation synchronisation [14]).
Instead, for each pair of shapes the AOP is solved whilst
being aware that some of the points in the one shape have
wrong counterparts in the other shape. Of course this will
have influence on the resulting transformations. Thus, the
objective of the simulations described in this section is to
assess to what extent the transformations from shapes with
wrong correspondences can be reconstructed using transfor-
mation synchronisation.

In every run, additionally to randomly selecting 30 out
of 100 shapes, the correspondences between the n points
in each shape are disturbed. For disturbing the corre-
spondence assignments each pair of shapes that is to be
aligned is considered independently. For that, a propor-
tion of ν ∈ [0, 1] points from the total number of n points
is selected. Then, as correspondences between the pair of
point-clouds Xi,Xj ∈ Rn×2 are implicitly given by the
ordering of the rows, the rows corresponding to the previ-
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Figure 3. Average shape error for the reference-based (green), iterative mean shape-based (black), synchronisation-based (blue) and strati-
fied (red) method for solving the GPP with wrong correspondences. The horizontal axis shows the proportion ν of wrong correspondences.
At the top of each graph three shapes according to the particular level of deformation or noise are depicted. Shown is the average shape
error for 500 runs of disturbing correspondence assignments in each graph. In every run k = 30 out of K = 100 shapes are randomly
selected, where each shape comprises n = 98 points in d = 2 dimensions. In the right-most column examples of the correspondence
assignments between a pair of shapes are depicted for different values of ν in each row. In order to keep the visualisation as coherent as
possible, the wrong correspondences (red lines) and the correct correspondences (green lines) are shown separately.

ously selected points are reordered randomly in one of the
point-clouds, directly resulting in disturbed correspondence
assignments between the pair of point-clouds Xi,Xj .

In Fig. 3 the reference-based, the iterative mean shape-
based, the synchronisation-based and the stratified solution
of the GPP with wrong correspondences are shown for dif-
ferent levels of deformation and noise. On the right of Fig. 3
examples of the correspondences between pairs of shapes
are depicted for different values of ν.

It can be seen that for different levels of deformation and
different levels of noise with 70% − 80% of wrong corre-
spondences the outcome is only marginally affected when
using our proposed method. In contrast, all other evaluated
methods result in significantly larger errors, which can be
explained by the fact that our method is the only one that is
able to make use of the information that is contained in all
pairwise transformations.

4. Conclusion
The alignment of multiple (corresponding) point-clouds

simultaneously is generally tackled by iteratively aligning
all point-clouds to some reference. Whereas this approach

is biased (selecting a fixed reference) or initialisation-
dependent (using the adaptive mean as reference) we have
presented a method that is completely unbiased and does
not depend on initialisation.

Our key observation is that the underlying noise-free
transformations can be retrieved from the null space of a
matrix that can directly be obtained from pairwise align-
ments. Whilst related approaches for rotation matrices
[9, 10, 17] or permutation matrices [14] have been pro-
posed, we have generalised the synchronisation method to
handle general linear and affine transformations as well
as similarity, euclidean and rigid transformations. Exper-
imentally we were able to demonstrate that the proposed
method is able to effectively reduce noise from the set of
pairwise transformations and to solve the Generalised Pro-
crustes Problem at least as good as existing approaches
for the missing data case whilst significantly outperform-
ing other methods for the presented wrong correspondence
case.
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