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In many real-world applications, we are often facing the problem of cross
domain learning, i.e., to borrow the labeled data or transfer the already learnt
knowledge from a source domain to a target domain. However, simply ap-
plying the classifier learnt in the source domain may hurt the performance
in the target domain, a phenomenon known as “domain shift." Furthermore,
the labeled target data are often very few and they alone are not sufficien-
t to construct a good classifier. Therefore, our main objective is to attain
good performance on the target domain by utilizing the source data or adapt-
ing classifiers trained in the source domain. In addition, how to effectively
leverage unlabeled target data also remains an important issue for domain
adaptation.

To this end, we propose in this paper a novel Semi-supervised Domain
Adaptation with Subspace Learning (SDASL) framework for visual recog-
nition. It attempts to bridge the domain gap by jointly constructing good
subspace feature representations to minimize domain divergence and lever-
aging unlabeled target data in conjunction with labeled data. The training
of SDASL is performed simultaneously by minimizing the classification er-
ror, preserving the structure relationships within and across domains, and
restricting similarity defined on unlabeled target instances. In particular,
the objective function of SDASL is composed of three components, i.e.,
structural risk, structure preservation within and across domains, and man-
ifold regularization. Of the three, the former two aim to explore invariant
low dimensional structures across domains and meanwhile minimizing the
structural risk of the learnt models on the subspace, while the last exploits
the intrinsic information in the target domain. After we obtain the predictive
function on the subspace, the label of a new coming target instance can be
determined accordingly.

Formally, suppose there are ls labeled samples in the source domain,
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tively. The corresponding labels of XS and XT are given as column vec-
tors YS ∈ {−1,+1}ls and YT ∈ {−1,+1}lt , respectively. We project the
original features into the low-dimensional subspace to explore the invariant
structures across domains and minimize domain divergence. Accordingly,
the linear predictive functions are defined as{

fS(xS) = xSmSwS +bS
fT (xT ) = xT mT wT +bT

, (1)

where wS,wT ∈ Rd and bS, bT are the model weight and bias parameters,
respectively. mS and mT are the feature mapping matrices, with mS ∈RdS×d

and mT ∈ RdT×d , where d is the dimension of the subspace.
The training objective of structural risk corresponds to an empirical

risk minimization with a regularization penalty over the model parameters
{wS,bS,mS,wT ,bT ,mT } as

min{
wS ,bS ,mS
wT ,bT ,mT

}∥XSmSwS +bS −YS∥2 +αS ∥wS∥2

+∥XT mT wT +bT −YT ∥2 +αT ∥wT ∥2

s.t. m⊤
S mS = I, m⊤

T mT = I ,

(2)

where αS and αT are tradeoff parameters. The objective decomposes into
the empirical risk with a least square loss of the labeled examples from both
source and target domains, and the regularization penalty ∥wS∥2 and ∥wT ∥2.
The parameter αS and αT are the tradeoff parameters.

Deriving from the idea of seeking for a joint latent space that corre-
sponding views are mapped to nearby locations in multi-view learning [2],
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we incorporate a discriminative regularization term in the objective function
to take into account of the structure within and across domains. That is, the
distance between the mappings in the latent subspace of the same category
from source and target domains should be as small as possible. Technically,

positives from both domains are represented as: A =

[
X+

S mS
X+

T mT

]
, where

X+
S and X+

T denote the positives in the source and target domain, respec-
tively. The distance between positives from source and target domains is
measured by tr(A⊤L1A), where L1 = D1−11⊤, 1 denotes a column vector
with all 1 entries, and D1 is the diagonal matrix that contains the row sums
of 11⊤. To learn a shared latent space across different domains, we integrate
the structure preservation within and across domains as a regularization for
domain adaptation.

Manifold regularization has been shown effective for semi-supervised
learning [3]. This regularizer is to measure the smoothness of the predicted
class labels along the inherent structure of unlabeled target data. In other
words, the outputs of the predictive function are restricted to have similar
values for similar examples. The estimation of the manifold regularization
can be measured by the appropriate pairwise similarity S between the unla-
beled target samples. By defining the graph Laplacian L2 = D−S, where
D is a diagonal matrix with its elements defined as Dii = ∑ j Si j , the regular-
ization can be computed as (XU

T mT wT )
⊤L2(XU

T mT wT ).
The overall objective function integrates the above three components as

min{
wS ,bS ,mS
wT ,bT ,mT

}∥XSmSwS +bS −YS∥2 +αS ∥wS∥2

+∥XT mT wT +bT −YT ∥2 +αT ∥wT ∥2

+γtr(A⊤L1A)+η(XU
T mT wT )

⊤L2(XU
T mT wT )

s.t. m⊤
S mS = I, m⊤

T mT = I ,

(3)

where γ and η are tradeoff parameters. To address the difficult non-convex
problem (3) due to the orthogonal constrains, a gradient descent optimiza-
tion procedure with curvilinear search [6] is used for a local optimal solu-
tion.

After the optimization, we can obtain the linear predictive functions
defined in Eq.(1). Next, given a target test visual instance, x̂ ∈ Rdt , we
compute the prediction values using the linear function as

f (x̂) = x̂mT wT +bT . (4)

The label of instance x̂ is sign( f (x̂)), where sign(•) is the signum function.
We empirically verify the merit of SDASL from both image-to-image

and image-to-video transfer tasks, i.e., object recognition on the image dataset
studied in [5], and video concept detection on the challenge TRECVID 2011
Semantic Indexing task [4] with the assistance of images from ImageNet [1].
Encouraging results validate our proposal and analysis.
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