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Abstract

Subspace clustering is a problem of finding a multi-

subspace representation that best fits sample points drawn

from a high-dimensional space. The existing clustering

models generally adopt different norms to describe noise,

which is equivalent to assuming that the data are corrupt-

ed by specific types of noise. In practice, however, noise

is much more complex. So it is inappropriate to simply

use a certain norm to model noise. Therefore, we pro-

pose Mixture of Gaussian Regression (MoG Regression)

for subspace clustering by modeling noise as a Mixture of

Gaussians (MoG). The MoG Regression provides an effec-

tive way to model a much broader range of noise distri-

butions. As a result, the obtained affinity matrix is better

at characterizing the structure of data in real applications.

Experimental results on multiple datasets demonstrate that

MoG Regression significantly outperforms state-of-the-art

subspace clustering methods.

1. Introduction

Subspace clustering models high-dimensional data as

samples drawn from a union of multiple low-dimensional

subspaces. It has been attracting more and more attention

in recent years and has found many applications in com-

puter vision and image processing, such as image segmen-

tation [30], motion segmentation [21], face clustering [6],

and image representation and compression [24].

1.1. Related Work

A number of approaches to subspace clustering have

been proposed in the past two decades. These method-

s can be roughly divided into four main categories: al-

gebraic methods [14, 22, 4], iterative methods [2, 1], sta-

tistical methods [13, 18, 29], and spectral-clustering-based

methods [23, 28, 5, 9, 12, 19, 10]. It should be noted that

the spectral-clustering-based methods, which are based on

the spectral graph theory [3], have shown excellent perfor-

mance in many real applications.

Generally, the spectral-clustering-based methods consist

of two steps. Firstly, an affinity matrix is built to capture the

similarity between pairs of sample points. Secondly, graph

cut is applied to a graph, whose vertices are the samples

and whose weights are prescribed by the affinity matrix, for

segmenting the sample points. Building a ”good” affinity

matrix is key to guarantee a good clustering result. So many

subspace clustering methods focus on bringing up a good

affinity matrix.

Based on the fact that each data point in a union of sub-

spaces can be represented as a linear or affine combination

of other points, the Sparse Subspace Clustering (SSC) algo-

rithm [5] utilizes the ℓ1-norm to find the sparsest represen-

tation of a data point, where points from the same subspace

correspond to the nonzero representation coefficients. Low-

Rank Representation (LRR) [9] aims to get a low rank rep-

resentation for robust subspace recovery of the data contain-

ing corruptions. Least Squares Regression (LSR) [12] em-

ploys the Frobenius norm to speed up the clustering process,

while still ensuring the grouping effect of the representation

matrix. However, the solution to SSC may be too sparse to

encode the data correlation, while both LRR and LSR may

result in dense connections between clusters. To achieve a

good balance between within-cluster density (which we cal-

l grouping effect afterwards) and between-cluster sparsity,

Correlation Adaptive Subspace Segmentation (CASS) [10]

adopts trace Lasso, which is adaptive to the data correlation,

to regularize the representation matrix.

As pointed out by Liu et al. [9], noise which always ex-

ists in data can perturb the subspace structures, leading to

unreliable subspace clustering. To recover the subspaces

when the data are corrupted, SSC, LRR, LSR, and CASS

employ different norms to describe different types of noise,

respectively.

Given data matrix X = (x1,x2, ...,xN ) ∈ R
M×N with

N samples in R
M , we denote E ∈ R

M×N and Z ∈ R
N×N

as the noise matrix and the representation matrix, respec-

tively, where the entry Zij of Z measures the similarity be-

tween points xi and xj . We use ‖ · ‖F , ‖ · ‖1, ‖ · ‖2, ‖ · ‖2,1,

and ‖ · ‖∗ to denote Frobenius norm, the ℓ1-norm (sum of



absolute values), the ℓ2-norm, the ℓ2,1-norm (sum of the ℓ2-

norm of columns of a matrix), and the nuclear norm (sum

of singular values), respectively. The mathematical models

of existing representative subspace clustering methods are

as follows.

Sparse Subspace Clustering (SSC) [5]:

min
Z,E
‖ E ‖1 +λ ‖ Z ‖1

s.t. X = XZ +E, diag (Z) = 0.

Low-Rank Representation (LRR) [9]:

min
Z,E
‖ E ‖2,1 +λ ‖ Z ‖∗

s.t. X = XZ +E.

Least Squares Regression (LSR) [12]:

min
Z,E
‖ E ‖2F +λ ‖ Z ‖2F

s.t. X = XZ +E, diag (Z) = 0.

Correlation Adaptive Subspace Segmentation

(CASS) [10]:

min
Z,E
‖ E ‖2F +λ

N∑
n=1

‖Xdiag (zi) ‖∗

s.t. X = XZ +E.

In the above formulations, zi is the i-th column of Z,

diag (zi) is a diagonal matrix with entries of zi on its di-

agonal, and λ > 0 is a parameter to balance the effects of

two terms. ‖ E ‖2F is utilized to model Gaussian noise,

‖ E ‖2,1 is for sample-specific corruptions, and ‖ E ‖1 is

for entry-wise corruptions.

All the methods mentioned above rely on specific norms

on Z and E to encourage the between-cluster sparsity and

grouping effect of the representation matrix. However, they

all use a simple norm for the noise term, which has a signif-

icant influence on the performance of the subspace cluster-

ing model. If the data are contaminated by noise, the sub-

space structures, grouping effect, and the data similarity are

all likely to be corrupted. How the effect will be depends

on the distribution of noise. In this situation, if we simply

require the representation matrix to be sparse or block diag-

onal without deeply analyzing the noise, the subspaces may

not be accurately recovered, leading to unsatisfactory clus-

tering results. Unfortunately, real noise in applications often

exhibits very complex statistical distributions, rather than

simply being Gaussian or sparse [31]. So the noise cannot

be easily described by a simple norm like the Frobenious

norm, ℓ1-norm, or ℓ2,1-norm. Therefore, how to properly

model the noise is of significant importance for subspace

clustering.

To address this issue, we apply a fundamental result of

probability theory that almost any distribution can be well

approximated by a mixture of a sufficient number of Gaus-

sians. Namely, we utilize the mixture of Gaussian (MoG)

model to describe real noise accurately, rather than assum-

ing some specific distribution for noise. The number of

Gaussians can be estimated by cross validation. As for the

regularization on Z, we simply choose the Frobenius nor-

m. The reasons are two-fold. First, we want to demonstrate

the effect of noise modeling on subspace clustering. So a

simple regularization on Z can better expose such an effec-

t. Second, with the Frobenious norm on Z the computation

can be made much easier. For example, we can employ

the traditional Expectation Maximization (EM) algorithm

to solve our new subspace clustering model.

1.2. Paper Contributions and Organization

We summarize the contributions of this paper as follows:

• We present a novel subspace clustering approach

called Mixture of Gaussian Regression (MoG Regres-

sion), which employs the MoG model to characterize

noise with a complex distribution.

• We prove that MoG Regression has the grouping ef-

fect, which is important for subspace clustering.

The remainder of the paper is organized as follows. In

Section 2, we motivate and introduce the MoG Regression

method for clustering data with complex noise. In Section 3

we prove the grouping effect of the proposed model. Sec-

tion 4 provides experimental results on motion segmenta-

tion, hand-written digits clustering, and complex face clus-

tering to demonstrate the superiority of MoG Regression.

2. Subspace Clustering via MoG Regression

As described in [11], we consider subspace clustering as

the following optimization problem:

min
Z,E
L (E) +R (Z)

s.t. X = XZ +E,
(1)

where L (E) is the loss function to describe noise and

R (Z) is the regularization term to impose some properties

on the representation matrix Z.

From (1) we see that how to describe noise has sig-

nificant importance in subspace clustering. Lu et al. [11]

proposed Correntropy Induced L2 (CIL2) graph, which

uses correntropy to process non-Gaussian and impulsive

noise for robust subspace clustering, and the effectiveness is

demonstrated by experiments of face clustering under vari-

ous types of corruptions and occlusions. In fact, the varia-

tion of the width of kernel function makes the behavior of

Correntropy Induced Metric changes between ℓ0, ℓ1, and ℓ2
norms, which is effective for many types of noise but not

for general noise anyway.



2.1. MoG Regression

In this paper, we propose a novel method called MoG

Regression, which employs MoG to characterize general

noise for robust subspace clustering.

We assume that each column en (n = 1 , . . . ,N ) in E

follows an MoG distribution, i.e.,

p (en) =

K∑

k=1

πkN (en | 0,Σk) ,

where K is the number of Gaussian components and πk

denotes the mixing weight with πk ≥ 0 and
∑K

k=1
πk = 1.

N (en | 0,Σk) is the zero-mean multivariate Gaussian dis-

tribution, with Σk(k = 1, 2, . . . ,K) denoting the covari-

ance matrix.

Similar to classical regression analysis, all columns in E

are assumed to be independently and identically distributed.

So we have

p (E) =

N∏

n=1

K∑

k=1

πkN (en | 0,Σk) .

In a general MoG model, we wish to find π =

(π1, ..., πK)
⊤

and Σ = (Σ1, ...,ΣK) that maximize p (E),
which is equivalent to minimizing the negative log likeli-

hood function defined as

− ln p (E) = −
N∑

n=1

ln

(
K∑

k=1

πkN (en | 0,Σk)

)
.

If we utilize L (E) = − ln p (E) to replace the Frobe-

nius norm in the LSR model, then the proposed MoG Re-

gression method can be formulated as follows:

min
Z,E,π,Σ

−
N∑

n=1

ln

(
K∑

k=1

πkN (en | 0,Σk)

)
+ λ ‖ Z ‖2F

s.t. X = XZ +E, diag (Z) = 0,

πk ≥ 0,Σk ∈ S
+, k = 1, ...,K,

K∑
k=1

πk = 1,

(2)

where λ > 0 is the regularization parameter, S+ is the set of

symmetrical positive definite (SPD) matrices and the con-

straint diag (Z) = 0 discourages using a sample to repre-

sent itself. Here we simply choose the Frobenius norm to

regularize Z. As stated before, the Frobenious norm on Z

can not only reduce the computation cost but also expose

the the effect of MoG regression based noise modeling on

subspace clustering.

A natural way to solve (2) is the EM algorithm, which

finds the maximum-likelihood estimate of the parameter-

s iteratively. It starts from an initial guess and iteratively

runs an expectation (E) step, which evaluates the posteri-

or probabilities using currently estimated parameters, and

a maximization (M) step, which re-estimates the param-

eters based on the probabilities calculated in the E step.

The iterations stop until some convergence criteria are sat-

isfied [26, 27, 16]. Integrating the traditional steps of the

EM algorithm, we can obtain the solution to problem (2) in

three main steps.

First, we initialize the representation matrix Z, mixing

coefficients πk, and covariance matrices Σk, k = 1, ...,K.

In the E-step, we compute the posterior probabilities

based on the current parameters:

γn,k =
πkN (ẽn | 0,Σk)∑K

j=1
πjN (ẽn | 0,Σj)

,

where ẽn = X̃nzn − xn and X̃n is a copy of X except

that the n-th column is 0.

In the M-step, we need to minimize our model with re-

spect to the parameters, using the current posterior proba-

bilities.

To find Σk, k = 1, 2, . . . ,K, we solve the following

optimization problem

min
Σk

−
N∑

n=1

ln
(∑K

k=1
πkN (ẽn | 0,Σk)

)

s.t. Σk ∈ S
+.

Setting the derivative of the objective function with re-

spect to Σk to zero, we obtain

Σk =
1

γn,k

(
N∑

n=1

γn,kẽn · ẽ
⊤
n + ǫI

)
,

where ǫ > 0 is a small regularization parameter to ensure

that Σk is invertible.

Each πk, k = 1, 2, . . . ,K, is updated by solving

min
πk≥0

−
N∑

n=1

ln

(
K∑

k=1

πkN (ẽn | 0,Σk)

)
+β

(
K∑

k=1

πk − 1

)
,

where β > 0 is the Lagrangian multiplier. We find β = N
and accordingly

πk =
1

N

N∑

n=1

γn,k.

Each column of Z is updated by solving the following

problem:

min
zn

−
N∑

n=1

ln

(
K∑

k=1

πkN (ẽn | 0,Σk)

)
+ λ ‖ Z ‖2F .

By setting the derivative of object function with respect

to zn to zero, we get

zn =

(∑K

k=1
πkN (ẽn | 0,Σk) X̃

⊤

nΣ
−1

k X̃n∑K

j=1
πjN (ẽn | 0,Σj)

+ 2λI

)−1

bn,



where

bn =

∑K

k=1
πkN (ẽn | 0,Σk) X̃nΣ

−1

k∑K

j=1
πjN (ẽn | 0,Σj)

xn.

Then we substitute the renewed Σk, πk, and Z in (2)

for the next iteration. The optimization algorithm for solv-

ing(2) is summarized in Algorithm 1.

2.2. MoG Regression for Subspace Clustering

Similar to the previous methods [5, 9, 12], our clustering

method is also based on the spectral clustering theory [3,

17]. After solving the MoG Regression problem (2) to get

the representation matrix Z, we define the affinity matrix as

C =| Z | + | Z⊤ |,

where each entry Cij in C measures the similarity between

data points xi and xj .

Figure 1 illustrates the affinity matrices of 10 subjects

clustering derived by SSC, LRR, LSR, CASS, CIL2, and

the proposed MoG Regression on the AR database, respec-

tively, where the facial variations, illumination variations,

and occlusions can be regarded as complex noise added to

the original images. We can see that the affinity matrices by

SSC and CASS are sparse due to the sparsity regularization,

while the correlations within clusters are weak. So they may

be less capable of grouping data points in the same cluster.

In contrast, the affinity matrices from LRR, LSR, CIL2, and

MoG Regression are very dense. The representation coef-

ficients within clusters are large, indicating the good abili-

ty to group correlated data together. However, we can see

that the contrast between diagonal blocks and non-diagonal

blocks of MoG Regression is much higher than those of LR-

R, LSR, and CIL2, and the differences between coefficients

within the same clusters of MoG Regression are also much

smaller.

Table 1. The contrast (%) of affinity matrices in Figure 1

SSC LRR LSR CASS CIL2 Ours

73.51 75.41 52.10 75.18 76.35 80.32

To quantitatively evaluate the contrast of the diagonal

blocks against the non-diagonal blocks of each method, we

define the contrast by (Sd−Snd)/‖C‖1, where Sd and Snd

are the sums of absolute values of entries in diagonal and

non-diagonal blocks, respectively. Table 1 shows the con-

trast of the affinity matrices from different methods. We see

that the contrast value of MoG Regression is much higher

than those of other approaches. This demonstrates that, with

complex noise aggravating the data, our method is better at

describing the distribution of noise, thus showing stronger

Algorithm 1: Finding the solution of (2) by EM

Initialize: data matrix X , covariance matrices Σk, param-

eter λ, threshold value ε, initial representation matrix Z,

and the components number K.

Repeat :

1: Compute γn,k:

γn,k =
πkN

(
ẽ
old
n | 0,Σold

k

)

∑K

j=1
πjN

(
ẽ
old
n | 0,Σold

j

) ,

where ẽ
old
n = X̃nz

old
n − xn.

2: Update the Σk, πk, and Z:

Σ
new
k =

1

γn,k

(
N∑

n=1

γn,kẽ
old
n

(
ẽ
old
n

)⊤
+ ǫI

)
,

πnew
k =

1

N

N∑

n=1

γn,k,

z
new
n =



∑K

k=1
ξkX̃

⊤

n (Σnew
k )

−1
X̃n∑K

j=1
ξj

+ 2λI




−1

bn,

where

bn =

∑K

k=1
ξkX̃n (Σ

new
k )

−1

∑K

j=1
ξj

xn,

and

ξk = πkN
(
ẽ
old
n | 0,Σnew

k

)
, ξj = πjN

(
ẽ
old
n | 0,Σnew

j

)
.

3:

Σ
old
k ←− Σ

new
k , πold

k ←− πnew
k , z

old
n ←− z

new
n .

Until :

‖ Zold −Z
new ‖F ≤ ε and ‖ Σold −Σ

new ‖F ≤ ε.

Output: The representation matrix Z.

grouping effect and greater ability to recover the true sub-

space structures.

In the end, we employ Normalize Cut [19] on the affinity

matrix C to produce the final clustering results.

3. The Grouping Effect

In this section we will prove the effectiveness of our

proposed model in subspace clustering by investigating its



(a) SSC [5] (b) LRR [9] (c) LSR [12] (d) CASS [10] (e) CIL2 [11] (f) Ours

Figure 1. The affinity matrices of 10 objects obtained by different methods on the AR database.

grouping effect. The grouping effect is an important criteri-

on for measuring the validity of a clustering method, which

tends group highly correlated data together [12]. We state

the grouping effect of MoG Regression as follows.

Theorem 3.1 Given a sample point x ∈ R
M , the normal-

ized data matrix X and the regularization parameter λ, let

ẑ be the optimal solution to

min
z
− ln

(
K∑

k=1

πkN (Xz − x | 0,Σk)

)
+ λ ‖ z ‖2,

then there exists a constant a such that

| ẑi − ẑj |≤
a

λ

√
1− ρ

2
,

where ρ = cos〈xi,xj〉. Here we denote ẑi and ẑj as the

i-th and j-th entries of vector ẑ, and xi and xj as the i-th
and j-th columns of X , respectively.

Proof 3.1 Let

f (z) = − ln

(
K∑

k=1

πkN (Xz − x | 0,Σk)

)
+ λ ‖ z ‖2 .

Since ẑ = argmin
z

f (z), we have

∂f (z)

∂z

∣∣∣∣
z=ẑ

= 0.

This gives

x
⊤
i

(∑K

k=1
ξkΣ

−1

k

)
(Xẑ − x)

∑K

k=1
ξk

+ 2λẑi = 0,

and

x
⊤
j

(∑K

k=1
ξkΣ

−1

k

)
(Xẑ − x)

∑K

k=1
ξk

+ 2λẑj = 0,

where ξk = πkN (Xẑ − x | 0,Σk).

From the above two equations for ẑi and ẑj we deduce

that

ẑi − ẑj =

(
x
⊤
i − x

⊤
j

) (∑K

k=1
ξkΣ

−1

k

)
(Xẑ − x)

2λ
∑K

k=1
ξk

.

Note that

∥∥∥∥∥

K∑

k=1

ξkΣ
−1

k

∥∥∥∥∥
2

≤
K∑

k=1

ξk ‖ Σ
−1

k ‖2

≤

(
max

k
‖ Σ−1

k ‖2

) K∑

k=1

ξk.

So we get

| ẑi − ẑ
j |≤

‖ xi − xj ‖2 · ‖ Xẑ − x ‖2 ·
(
max

k
‖ Σ

−1

k ‖2
)

2λ
.

Note that ẑ is a minimizer of f(z). So we have

f (ẑ) ≤ f (0) ,

which yields

ln

(
K∑

k=1

πkN (Xẑ − x | 0,Σk)

)

≥ ln

(
K∑

k=1

πkN (x | 0,Σk)

)

.

On the other hand, if we define

V = argmax
k

πk

and
S = argmax

k

N (Xẑ − x | 0,Σk) ,



then we get

ln (KπV N (Xẑ − x | 0,ΣS)) ≥ ln

(
K∑

k=1

πkN (x | 0,Σk)

)
,

which is equivalent to

(Xẑ − x)
⊤
Σ

−1

S (Xẑ − x)

2

≤ ln




KπV

(2π)
M

2 | ΣS |
1

2

(
K∑

k=1

πkN (x | 0,Σk)

)


 .

Since Σ
−1

S is a symmetric positive definite matrix, whose

unitary similar matrix is a diagonal matrix, we can list the

diagonal entries in descending order. Then We have

| ΣS |
−1= U⊤



λ1 · · · 0

...
. . .

...

0 · · · λmin


U,

Where U is the unitary matrix, λ1 ≥ · · · · · · ≥ λmin denote

the eigenvalues of Σ
−1

S . Thus we get

(Xẑ − x)
⊤
Σ

−1

S (Xẑ − x)

= (Xẑ − x)
⊤
U⊤



λ1 · · · 0

...
. . .

...

0 · · · λmin


U (Xẑ − x)

≥λmin ‖Xẑ − x ‖2 .

It yields to

‖Xẑ − x ‖2≤ Q,

where

Q =
1

λmin

ln




KπV

(2π)
M

2 | ΣS |
1

2

(
K∑

k=1

πkN (x | 0,Σk)

)





2

.

Then we get

| ẑi − ẑj |≤
a

λ

√
1− ρ

2
,

where

a =

(
max

k
‖ Σ−1

k ‖2

)√
Q

is a constant.

From Theorem 3.1 we can see that, if xi and xj are

highly correlated, then ρ is close to 1 and further the up-

per bound of the difference between ẑi and ẑj approaches

0. Therefore, xi and xj would be grouped into the same

cluster. An illustration of grouping effect can be seen in

Figure 1, where the differences between representation co-

efficients are small within the same cluster while larger be-

tween different clusters.

4. Experiments

In this section, we show the performance of the proposed

MoG Regression method on the Hopkins 155 database [20],

the Rotated MNIST Dataset [7], the AR database [15], and

the Extended Yale Face Dataset B [25]. Experimental re-

sults show that the proposed method is effective and robust

to noise in motion segmentation, handwritten digits cluster-

ing, and complex face clustering.

We also apply SSC [5], LRR [9], LSR [12], CASS [10],

and CIL2 [11] to these datasets. We tune the parameter-

s of each method to achieve the best performance for fair

comparison, and the clustering accuracy [5] is employed in

quantitative evaluation. The comparison shows that our ap-

proach outperforms five state-of-the-art methods.

4.1. Hopkins 155 Database

The Hopkins 155 motion segmentation database [20]

contains 155 video sequences, where 120 of the videos con-

tain 2 motions and 35 of the videos have 3 motions. On

average, each sequence of the 2 motions has 266 feature

trajectories and 30 frames, and each sequence of the 3 mo-

tions has 398 feature trajectories and 29 frames. For each

sequence, a tracker is used to extract the point trajectories

and a subspace clustering task is defined. Thus we have 155

subspace clustering tasks in total.

We first use PCA to reduce the dimensionality of the

data. Then we test the MoG Regression method on each

video sequence. Some motion segmentation results of our

approach are shown in Figure 2, where motions of different

objects and background motions can be accurately segment-

ed.

(a) (b) (c)

Figure 2. Exemplar results of motion segmentation on the Hopkins

155 Database. (a) Checkerboard. (b) Cars. (c) People.

Table 2 presents the clustering accuracies of different

methods. We can see that MoG Regression achieves signif-

icantly higher accuracies than the state-of-the-art methods.

4.2. MNIST-Back-Rand Dataset

The MNIST-back-rand database consists of 50000 im-

ages of hand-written digits from 0 to 9. It is first selected

from the MNIST dataset [8] and then transformed into more

challenging images by inserting random noise into the orig-

inal images. Figure 3 shows some example images from the

dataset.



Table 2. The clustering accuracies (%) on the Hopkins 155

database.

SSC LRR LSR CASS CIL2 Ours

2
95.69 96.43 97.48 97.01 97.63 98.76

motions

3
91.97 92.35 93.21 94.06 94.34 95.03

motions

To reduce memory consumption in experiments, we ran-

domly select 10 images for each digit to build a subset that

contains 100 samples. Experimental results are reported in

Table 3. We can see the advantage of our method is re-

markable. This experiment shows that when the data are

contaminated with non-Gaussian or complex noise, the pro-

posed method is more capable of clustering the subspaces

with the help of MoG.

Figure 3. Examples of the MNIST-back-rand database, where dig-

its are corrupted with random noise.

Table 3. The clustering accuracies (%) on the MNIST-Back-Rand

database

SSC LRR LSR CASS CIL2 Ours

33.56 22.85 20.55 29.05 36.50 51.98

We also conduct experiments to see how the number K
of Gaussians affects the clustering accuracy of the proposed

model. The accuracies are shown in Figure 4. We can see

that when the number of Gaussians increases, the accura-

cy increases at first and then fluctuates, reaching the maxi-

mum value when K = 5. This is because when the number

of Gaussians is too small, MoG may not characterize the

noise accurately. On the other hand, when K is too large

the computation cost will increase and the grouping effect

will be suppressed (Difference bound demonstrated in The-

orem 3.1 will increase). In either case the distribution of

noise is not modeled well.

4.3. AR Dataset

The AR database [15] contains over 4,000 facial images

corresponding to 126 subjects (70 men and 56 women). For

each subject, 26 facial images are taken in two separate

sessions. These images suffer different facial variations,

including various facial expressions (neutral, smile, anger,

and scream), illumination variations (left light on, right light
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Figure 4. The clustering accuracies (%) of MoG Regression with

different values of K on the MNIST-Back-Rand database.

on, and all side lights on), and occlusion by sunglasses or

scarf.

Table 4. The clustering accuracies (%) on the AR database.

SSC LRR LSR CASS CIL2 Ours

5
83.05 84.41 87.69 78.46 85.38 93.85

subjects

10
75.06 78.54 63.07 77.69 80.39 88.85

subjects

We build two subspace clustering tasks by selecting first

5 and 10 subjects from this dataset, respectively. The clus-

tering results on the AR database of different algorithms

are shown in Table 4. We can see that MoG Regression

performs much better than other state-of-the-art methods in

both clustering tasks. This is because MoG Regression has

a strong grouping effect on this challenging database, which

can be seen in Figure 1.

4.4. Extended Yale Face Dataset B

The Extended Yale Face Dataset B [25] consists of 2,414

frontal face images of 38 subjects, where there are 64 faces

for each subject, acquired under various lighting, poses, and

illumination conditions. To reduce the computational cost

and the memory requirements, we resize the grayscale im-

ages to a resolution of 32× 32 pixels.

To evaluate the robustness of different methods, we con-

duct experiments on corrupted Extended Yale Face Dataset

B, where each image is corrupted by replacing random im-

age pixels with samples from a uniform distribution on the

interval from 0 to 255 [11], and the percentage of corrupted

pixels varies from 10% to 100%. Figure 5 shows the clus-

tering accuracies of all methods on the corrupted Extended

Yale B database.

From Figure 5 we can see that the proposed approach

performs much better when face images are randomly cor-
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Figure 5. The clustering accuracies (%) with pixel corruption on

the Extended Yale B database.

rupted at a level from 10% to 40%, showing better adapt-

ability and greater robustness in noise handling. When the

percentage of corrupted pixels is larger than 60%, the dis-

criminative information are badly damaged, thus weakening

the performance of all methods.

5. Conclusions

In this paper, we propose a new subspace clustering

method by employing the MoG model to describe the dis-

tribution of complex noise. Theoretical analysis shows that

the proposed MoG Regression method maintains the group-

ing effect. Experiments on motion segmentation, handwrit-

ten digits clustering, and complex face clustering demon-

strate the superiority of the proposed method, regarding sta-

bility and robustness in handling general noise, over the

state-of-the-art subspace clustering methods, SSC, LRR, L-

SR, and CASS, which assume Gaussian or sparse noise.

In the future, we will work on accelerating the solution of

MoG Regression.
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