
Learning Similarity Metrics for Dynamic Scene Segmentation

Damien Teney1 Matthew Brown2 Dimitry Kit2 Peter Hall2

1Carnegie Mellon University 2University of Bath
dteney@andrew.cmu.edu {m.brown,d.m.kit,maspmh}@bath.ac.uk

Abstract

This paper addresses the segmentation of videos with
arbitrary motion, including dynamic textures, using novel
motion features and a supervised learning approach. Dy-
namic textures are commonplace in natural scenes, and ex-
hibit complex patterns of appearance and motion (e.g. wa-
ter, smoke, swaying foliage). These are difficult for existing
segmentation algorithms, often violate the brightness con-
stancy assumption needed for optical flow, and have com-
plex segment characteristics beyond uniform appearance or
motion. Our solution uses custom spatiotemporal filters
that capture texture and motion cues, along with a novel
metric-learning framework that optimizes this representa-
tion for specific objects and scenes. This is used within
a hierarchical, graph-based segmentation setting, yielding
state-of-the-art results for dynamic texture segmentation.
We also demonstrate the applicability of our approach to
general object and motion segmentation, showing signifi-
cant improvements over unsupervised segmentation and re-
sults comparable to the best task specific approaches.

1. Introduction
We study the segmentation of videos of arbitrary dy-

namic scenes, focussing on dynamic textures such as water,
fire, or swaying trees [5]. These phenomena are common-
place in videos of natural scenes, but are poorly represented
in general-purpose segmentation benchmarks [16, 40, 27],
which mainly involve rigid or smooth non-rigid motion.
Dynamic textures exhibit complex appearance and motion
patterns, that usually have semantics beyond a simple con-
sistency metric. A sequence depicting trees, for exam-
ple, may contain smaller and larger branches, some static
and others swaying in the wind, that would generally be
assigned separate segments by unsupervised segmentation
methods, while they ideally should all be part of one “tree”
dynamic texture. Such mid-level interpretations of a scene
are beyond the uniform priors of most “supervoxels” and
unsupervised video segmentation methods [43]. To over-
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Figure 1. We extend the hierarchical graph-based segmentation
technique and apply it to dynamic scene segmentation by learning
distance metrics over motion and appearance features. Segments
are iteratively merged, spatially and temporally, to form larger and
larger segments. Merges occur between the most “similar” seg-
ments, as determined by our learned metric.

come these limitations, we present more appropriate fea-
tures, together with a supervised algorithm to learn such in-
formation from annotated, ground truth segmentations.

Our contribution consists of two parts. First, we use the
responses to a bank of spatiotemporal filters to capture the
appearance and motion characteristics of dynamic textures.
Similarly to 2D filters that can capture structure in static im-
ages (e.g. edges), these 3D filters capture structure in the
video volume, such as moving patterns [11]. The filters
in the bank are tuned to various scales, orientations, and
speeds, and provide a rich set of features that characterize
image appearance and dynamics. Different dynamic tex-
tures often present different motion statistics. Water ripples
in a pond, for example, will exhibit more low-frequency
motion than ocean waves. These examples can be treated as
a single “water” class, or as seperate phenomena depending
on the labels in the training set, which justifies a learning
approach. Therefore and secondly, we show how to learn
a metric between descriptors made of histograms of color
and filter-based motion cues, that allows supervised video
segmentaton in a hierarchical, graph-based framework [18]
(Fig. 1). We use ground truth segmentations to generate
pairwise constraints between descriptors, and learn a met-
ric that predicts whether segments should be merged or not



during the segmentation. If training segments are provided
with semantic labels, we use additional pairwise constraints
between segments of (“same-” or “different-class”) to learn
a metric that explicitly separates multiple semantic classes.
This allows a variety of training scenarios. The general task
of video segmentation encompasses a number of specific
applications that can benefit from learned mid-level models
and we additionally evaluate the applicability of our method
to the more classical tasks of motion segmentation [28] and
object segmentation from motion boundaries [35].

Practically, our work extends the hierarchical graph-
based video segmentation technique of Grundmann et
al. [18], which constructs a hierarchy of supervoxels of de-
creasing granularity. This algorithm is intrinsically suit-
able for a variety of tasks where the size of the desired
segments is not fixed or known a priori. Although it al-
ready proved very successful in a number of benchmarks
[43, 16], the algorithm is still limited to the grouping of pix-
els with a uniform prior on appearance and/or motion. An-
other practical, but significant drawback is its large memory
requirements (handled e.g. with block-processing [45]), es-
pecially with the rich motion features that we propose. We
address both of these issues by learning a metric between
segment descriptors in a supervised setting, and jointly op-
timizing dimensionality reduction of the descriptors to dra-
matically reduce the memory requirements of the original
algorithm. Note that this is not equivalent to first projecting
the data with e.g. PCA and then learning a metric on low-
dimensional descriptors, which may lose discriminative in-
formation. We rather optimize both tasks with a single ob-
jective function, thus fully exploiting the available supervi-
sion [34].

In summary, the technical contributions of this paper
are threefold. (1) A new method to improve hierarchical
video segmentation with supervised learning. We optimize
a metric between segment descriptors over labelled train-
ing data, using a large-margin formulation suitable for hier-
archical segmentation, unlike existing algorithms designed
for nearest-neighbour classification. (2) We characterize the
appearance and the motion within segments with a novel
set of features based on spatiotemporal filters, that allows
segmenting videos with arbitrary motions and complex dy-
namic textures. (3) We provide a method to optimize di-
mensionality reduction together with the learned metric,
which drastically reduces the memory requirements of the
original segmentation algorithm. These contributions are
evaluated on a number of tasks and datasets, which demon-
strate their value with results comparable or superior to the
state of the art.

2. Related work
Supervised video segmentation Video segmentation has
been studied extensively, in particular in the context of over-

segmentation into supervoxels (see [43, 16] for benchmarks
and reviews). These supervoxels are typically used as an ef-
ficient representation of videos for further higher-level pro-
cessing. Supervised learning is a way to improve the perfor-
mance of segmentation for specific tasks. Jiang et al. [26]
showed recently that the inclusion of supervised learning in
spectral clustering could lead to significant improvements
for video segmentation. Closely related to our approach is
the earlier work of Alpert et al. [1], who learned predictors
on pairs of segments to guide hierarchical merging in the
context of image segmentation. Learning pairwise predic-
tors for agglomerative clustering, in the form of a similarity
measure, was also studied recently by Jain et al. [24], using
reinforcement learning, and applied to the segmentation of
3D medical images.

A number of closely-related mid-level tasks can be for-
mulated as segmentation problems. Xu et al. [44] for exam-
ple focused on tracking cars and humans in a segmentation
framework, using learned models to improve the segmenta-
tion of instances of these specific classes. Object [35, 23]
and motion [2, 37, 25] segmentation are other tasks that
have been addressed both with specific methods [2, 37, 25],
and within a general segmentation framework [39]. We
have evaluated our method on mid-level tasks such as these,
showing that the inclusion of supervised learning signifi-
cantly improves results. Unlike previous works, however,
our approach is able to handle a wider variety of cases,
e.g. mixed scenes containing both dynamic textures and
rigid motions.
Dynamic texture segmentation Extracting relevant mo-
tion features to characterize dynamic textures is challeng-
ing as they often violate the common optic flow assump-
tions of brightness constancy and rigid motion (for example
in the case of water or smoke). Generative models have
been proposed to directly model image intensities with lin-
ear dynamical systems [12, 7], then used for segmentation
by iterative fitting [4, 5]. Most recent works proposed ad
hoc, handcrafted descriptors [6, 20]. Spatiotemporal filters
[15] were proposed early as a way to extract optical flow
[22], though the responses to a bank of such oriented filters
actually provide much richer information than optical flow.
They allow the capture of multiple oriented structures at any
space-time location, and handle both motion (e.g. translat-
ing objects) and non-motion (e.g. flickering effects) alike
with the same formulation. Derpanis et al. looked exten-
sively into their use for recognition of dynamic textures and
scenes [11, 14], and Teney and Brown [39] recently used
them as features for video segmentation. This paper lever-
ages the richness of these features via supervised learning,
in particular when using semantic (“class”) annotations of
training examples.
Metric learning We integrate supervised learning into the
segmentation framework by learning a dissimilarity, or dis-



tance metric between pairs of segments. Metric learning
has been studied extensively [41] mostly with the goal of
improving nearest-neighbour classification. For example,
Weinberger et al. [42] optimize a generalized Mahalanobis
metric, which is equivalent to a linear transformation of
the input features, to bring closer the close neighbours of
the same class, and further apart those of different classes.
Rather than optimising for nearest neighbour performance,
Simonyan et al. [34] perform discriminative dimensionality
reduction by optimizing a non-square linear projection ma-
trix. We tried both of these approaches, finding the large
margin formulation of Simonyan et al. [34] to perform bet-
ter in our case (Section 5), ultimately improving the ability
of our segment descriptors to predict whether they should
be merged during segmentation.

3. Hierarchical video segmentation
We will now provide a brief review of the graph-based

hierarchical video segmentation algorithm [18] then show
how to integrate supervised learning to guide the process.

An input video is represented by a graph of connected
regions, initialized as the lattice of adjacent voxels of the
video (Fig. 1). Formally, the graph is represented by its
nodes N , and edges E . Each node is assigned a descriptor
of appearance xi as described below. The edge topology
initially represents the 26-connectivity of adjacent voxels in
the video volume. An edge between nodes i and j is as-
signed a weight that represent a distance, or dissimilarity
between their descriptors, eij = d(xi, xj). This distance
function can be unsupervised as in [18], or, as proposed,
learned. The segmentation algorithm proceeds iteratively
and, at each iteration, merges the pair of nodes i, j of lowest
edge weight eij . The merged node, k, is then assigned a new
descriptor xk, the graph structure E is updated to represent
spatial and temporal adjacency in the video volume, and the
edges weights ekl ∀ l are updated accordingly. The nodes
of the graph thus represent growing segments. They are
strictly decreasing in number, and they constitute segmen-
tations of decreasing granularity. Most implementations of
the algorithm return segmentations at a few discrete “levels”
of segmentation, e.g. when a fixed percentage of edges have
been removed, though the algorithm effectively produces a
continuous tree of regions from pairwise merges1.

The appearance descriptors of the segments consist of
histograms of color [18] and histograms of filter-based mo-
tion cues (Section 4). There are two major advantages of us-
ing histograms as descriptors. First, they can be efficiently
updated, the histogram of a merged node being the weighted
average (by relative size) of those of the two original nodes.
Second, and more importantly, histograms can effectively

1We consider an implementation of the algorithm where edge weights
are continuously updated after each merge [17] instead of periodic updates
at fixed levels [18].
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Figure 2. Dendrogram of a typical segmentation (car sequence of
Fig. 7); the lowest, pixel-scale levels are not shown for clarity. The
vertical axis shows the distance between merged segments, which
is not monotonically increasing, as indicated by inversions in the
dendrogram (circled). This stems from the segment descriptors
being recomputed at the varying scales, and motivates the use of
different metrics for different segment sizes.

represent appearance within segments at varying scales. A
key factor in the effectiveness of the segmentation algorithm
was shown to be in recomputing the similarity between seg-
ments as the algorithm proceeds, thus incorporating fine and
coarse information [8]. However, a consequence of this
is that weights of merged edges are not monotonically in-
creasing, since these weights are recomputed using updated
descriptors. Intuitively, two small segments with very dif-
ferent contents at a small scale, thus linked by an edge of
large weight, will have, once merged, a more “uniform” his-
togram descriptor, and thus smaller edge weights with other
segments. This can be visualized as inversions on a den-
drogram of the merging process (Fig. 2), which are likely in
hierarchical clustering with recomputed distances (as e.g. in
centroid clustering [29]). Practically, this observation indi-
cates that the distance function between segments may ben-
efit from being adapted to the actual size of the segments
being compared (Section 5.2).

4. Motion cues from spatiotemporal filters
We characterize texture and motion in the video using a

bank of 3D, spatiotemporal filters [15, 10], that help reveal
structure in the video volume. Considering a Gaussian-like
function of three variables G(x, y, t) = e−(x

2+y2+t2), we
use its third order derivatives G3θ̂(x, y, t) =

∂3G
∂θ̂3

and their
Hilbert transforms H3θ̂(x, y, t), steered to a spatiotemporal
orientation of unit vector θ̂ (the symmetry axis of the G3
filter). We denote the video volume of stacked frames at a
spatial scale 1

σ with Vσ . The energy response for a given θ̂
at a given scale σ is then measured by

Eθ̂,σ = (G3θ̂ ∗ Vσ)
2 + (H3θ̂ ∗ Vσ)

2 , (1)

where ∗ denotes a convolution. Note that the Hilbert trans-
form corresponds to a phase shift of π/2, and the quadrature
pair of filters G3/H3 allows for extracting spectral strength
independent of the phase [15]. The bank of filters is built by
choosing a number of scales σj and a number of 3D orien-
tations θi that span a range of speeds and (2D) orientations



in the image. For example, a filter steered to θ = (1, 1, 1)
would respond to oblique patterns moving at 1 px/frame,
while a filter steered to θ = (1, 0, 0) would capture vertical,
static stuctures.

The filter responses (Eq. 1) are sensitive to contrast in the
image. We mitigate this with per-pixel normalization with
respect to the sum of responses of all filters and defining
an additional channel that captures the lack of structure in
untextured regions of the image [11]:

E′
θ̂i,σj

=
Eθ̂i,σj∑

k Eθ̂k,σj
+ ε

, (2)

E′ε,σj
=

ε∑
k Eθ̂k,σj

+ ε
, (3)

where ε is a noise threshold that prevents E′
θ̂i,σj

from get-
ting large wherever no filter of the bank gives a significant
response. All measurements E′

θ̂i,σj
and E′ε,σj

are concate-
nated to form L-1 normalized motion histograms. Note that
we do not sum responses of multiple filters as in existing
work [11, 39], where the authors sought measurements of
motion independent of image appearance. We rather as-
sume that such appearance information is valuable and that
filter groupings can subsequently be learned within our met-
ric. The motion histograms are conacatenated with classical
color histograms [18] to form the feature vector xi ∈ Rd of
a pixel or segment.

5. Learning a metric between segments
During the agglomerative segmentation process (Sec-

tion 3), segments are described by color and motion his-
tograms, and we now show how to learn a metric to compare
these segment descriptors. At each iteration of the segmen-
tation, a merge occurs between the two connected segments
of smallest mutual distance, and the metric alone thus de-
termines the outcome of the whole process. We learn a gen-
eralized Mahalanobis metric that compares descriptors x1,
x2 ∈ Rd as

d2L(x1, x2) = (x1 − x2)>L>L (x1 − x2) , (4)

where LTL ∈ Rd×d is the symmetric positive semi-definite
Mahalanobis matrix that defines the metric.

Training data is provided in the form of videos with man-
ual segmentations, from which we generate a set of con-
straints between pairs of segments of various sizes. To ob-
tain realistic constraints, we simulate the hierarchical seg-
mentation process with an unsupervised distance metric,
where merges are only allowed when consistent with the
ground truth. After each merge, the updated edges are
added to the training set as additional pairwise constraints.
Formally, one such constraint between segments i and j
is defined by the descriptors xi and xj , and an annotation

0 1

0 1

Chi-squared
distance
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Learned
distance

d(xi,xj)

Figure 3. We seek a distance function between segment descriptors
that predicts whether they should be merged (green) or not (red).
Compared to an unsupervised metric such as a chi-squared dis-
tance (upper), the metric learned with our large-margin optimiza-
tion much better predicts and separates the two outcomes (lower).

yij = 1 if they correspond to a same ground truth label,
yij = −1 otherwise. Our goal is to optimize L in Eq. 4 so
that the distance between nodes to be merged is small rela-
tive to all other pairs of segments that should not. Formally,
we want

dL(xi, xj)� dL(xk, xl) (5)
∀ i, j, k, l s.t. yij = +1, ykl = −1 . (6)

Note that this contrasts with metric learning designed for
nearest-neighbour classification (e.g. LMNN [42]) where
the distance should only be small to a few points of the same
class. This motivates the use of large-margin contraints [34]
for each training pair i, j:

yij(t− d2L(xi, xj)) > 1 , (7)

where t is the separating threshold. This constrains the dis-
tance to predict yij with margin of 1 on either side of t. The
constraints are grouped into the following objective func-
tion using a hinge-loss formulation:

argmin
L,t

∑
i,j

max
[
1− yij

(
t− d2L(xi, xj)

)
, 0
]

(8)

We use stochastic subgradient descent to optimize this ob-
jective as in [34].

5.1. Joint metric learning and dimensionality re-
duction

Examining Eq. 4, one can observe that the generalized
Mahalanobis distance is equivalent to an Euclidean distance
with the data in the projected space transformed by L, i.e.

d2L(x1, x2) = || (Lx1 − Lx2) ||22 . (9)

One can learn a non-square matrix L ∈ R
p×d, p < d,

that projects xi ∈ R
d to a space of lower dimension R

p.
This allows us to transform the segment descriptors with L
in a preprocessing step, and let the segmentation algorithm
work with lower-dimensional data. The dimensionality re-
duction is readily integrated into the objective function (8)



since we optimize over the matrix L, as opposed to the now
rank-deficient Mahalanobis matrix L′L. Note that reduc-
ing the dimension of our segment descriptors with a linear
transform is consistent with the merging of histograms by
weighted averging, which keeps the learned metric consis-
tent as segments are merged.

5.2. Multiscale metric learning

The distance metric is used to compare segments of in-
creasing size as the segmentation algorithm proceeds. As
mentioned in Section 3, typical histograms of small seg-
ments are likely to be different than those of larger ones.
Optimal rules for merging them are thus likely to differ as
well. In other words, features that matter at a small scale in
the image (e.g. color consistency) may not matter so much
with segments of larger spatial extent (where certain mo-
tions may then be more relevant, for example). We therefore
experimented with adapting the learned distance to different
scales.

For each pair of connected segments i, j, we denote with
aij the image area covered by the smallest of the two. A
number S of scales are defined as ranges of values on aij ,
and we learn a different Ls for each range (s = 1..S).
The Ls to apply to compare a given pair of segments i, j
is simply determined from the range their aij falls in. It is
crucial for the learned metrics to stay consistent and com-
parable across scales. Since the optimized objective (8) is
not convex in L, we do so by reoptimizing locally Ls−1 to
obtain the Ls of the following scale (see the algorithm list-
ing). This encourages the learned metric to vary smoothly
across scales, even though these are defined with fixed, hard
thresholds. This also helps to avoid overfitting the scarcer
training data of larger scales. Note that using a scale-
dependent metric (S > 1) does not allow pre-projecting
the data into a lower-dimensional space.

6. Results
We evaluate the proposed method on three segmentation

tasks that offer clear potential for a supervised approach:
dynamic texture segmentation, segmentation of rigid mo-
tions, and segmentation of objects from motion boundaries.
We compare our results to the respective state of the art for
each distinct task. Please consult the supplementary mate-
rial for additional results and details on the evaluation pro-
tocols.
Implementation Our implementation of the segmentation
algorithm follows [17]. Color histograms use the Lab space
with 3× 10 bins. Motion histograms use a filter bank span-
ning 2 scales, 8 orientations, and 9 speeds between 0 and
2 px/frame, plus a filter that captures flicker. This results in
a segment descriptor of size 175 (155 for grayscale videos).
The segmentation is bootstrapped at the lowest level using
pixel-wise color differences as edge weights, until segments

Algorithm Supervised learning of a multiscale, large-
margin metric between segments from pairwise constraints.

Input:
C = {(xi, x′i, yi, ai)}i constraints between pairs of segments
xi ∈ Rd: segment descriptors
yi = +1/−1: annotations, same/different ground truth label
ai: mean per-frame area of the smallest of the two segments

p ≤ d: effective dimensionality of transformed segment descriptors
S ≥ 1: number of scales
λ: learning rate of the subgradient descent

Output:
Discriminative projection matrices Ls (s = 1..S)

Procedure:
Initialize
L← p largest PCA components of all xi, x′i in C
t ← 1

2

[
mean

(
d2L(xi, x

′
i), yi=+1

)
+

mean
(
d2L(xi, x

′
i), yi=−1

) ]
Choose S contiguous ranges of ai from their distribution in C
For each scale s = 1..S

Select the subset of constraints C′ ⊂ C with ai ∈ ranges
Initialize from preceding scale: Ls ← Ls−1 and ts ← ts−1

Loop
Pick constraint i in C′ at random, w/ eq. prob. of yi=+1/− 1
If yi

(
t− d2Ls

(xi, x
′
i)
)
< 1 (constraint violated)

Ls← Ls − λ yi Ls (xi−x′i) (xi−x′i)>
ts ← ts + λ yi ts

Else Leave Ls, ts unchanged
Until Obj. (8) no longer decreasing on hold-out validation set

End

have sufficient size (amin = 20px) to consider meaningful
histograms [18].
Baselines We compare against the respective state-of-the-
art methods for each considered task. We also evaluate
the value of the proposed contributions against three al-
ternative approaches: (1) unsupervised segmentation using
a chi-squared distance between histograms2 (as in [18]),
(2) learning a metric using a simple linear logistic regressor
on absolute per-bin differences of histograms (similarly as
in [19]), (3) learning a metric with the state-of-the-art ITML
algorithm [9], which learns a generalized Mahalanobis dis-
tance but without dimensionality reduction.

6.1. Dynamic texture segmentation

We evalute the segmentation of dynamic textures on
the SynthDB [3] and Dyntex [31] datasets. The SynthDB
dataset [3] consists of collages of K patches of real footage
of fire, water, smoke, vegetation, etc. The sequences are
very challenging: videos are grayscale, some textures ex-
hibit very similar static appearance (Fig. 4), and adjacent

2We use the chi-squared distance as a baseline, which ensures a fair
but challenging comparison, as it was consistently shown to be the best-
performing among common unsupervised metrics.



textures sometimes have nearly-identical grayscale values.
The use of motion is thus crucial to achieve the segmenta-
tion of dynamic textures that only differ in their dynamic
appearance (e.g. tree branches moving at different frequen-
cies, or patches of smoke being blown in different direc-
tions). We use sequences with K = 2 and K = 3 for train-
ing and testing, respectively. Supervision for training is pro-
vided as the ground truth segmentation masks, and semantic
labels from 12 classes [30]. We obtained state-of-the-art re-
sults, and we detail below variations of our algorithm and
training conditions.
Unsupervised Segmentation with intensity histograms
alone performs very poorly on such dynamic textures
(Fig. 4), which demonstrates the inadequacy of a traditional
appearence-based segmentation approach. The proposed
filter-based motion features improves the performance sig-
nificantly, even when performing unsupervised segmenta-
tion, which shows that these features capture relevant infor-
mation.
Learning from manual segmentations We first learn our
distance metric using the ground truth segmentation masks,
generating our constraints between adjacent segments in the
training examples (Section 5). We obtain a consistent im-
provement over unsupervised segmentation (the Rand index
increasing from 72.7% to 89.7%). We plot, in Fig. 4, accu-
racy against the size of dimension-reduced segment descrip-
tors (p). This figure suggests that dimensionality reduction
can be performed aggressively, with a reasonable decrease
in performance together with a memory footprint smaller by
a factor of 10. This implies that there is a large redundancy
in the original descriptors for the present task. Anecdo-
tally, we observed that the dimensions that correspond to the
intensity histograms, were given very little importance in
the projected descriptors. Moreover, moderate dimension-
ality reduction may even prove beneficial as a way to avoid
overfitting the training data, by discarding irrelevant dimen-
sions from the projected descriptors. This “sweet spot” for
the number of dimensions p is easily identifiable by cross-
validation on the training data.
Learning from semantic labels We then use additional
constraints from semantic annotations of the training data
into 12 classes (e.g. grass, river, steam, pond). Constraints
are generated between training segments, selected at ran-
dom, with y = +1/−1 for segments with a same/different
label (Section 5). The learned distance is now explicitly
trained to differentiate textures of different categories. This
brings an additional improved in performance at segment-
ing different types of textures (Rand index of 90.2%). We
peform near-perfect segmentation of most of the 100 test
sequences (Fig. 4). We surpass all results reported on this
dataset, in particular those of [39] that enforced static seg-
ments (whereas we perform a true video segmentation), and
those of [6] that use handcrafted, specially-designed de-

scriptors.

We now evaluate our ability to segment dynamic textures
in real videos of the Dyntex dataset [31]. We use the dis-
tance learned on the SynthDB dataset (from manual seg-
mentations and semantic labels, p=d) to segment the scenes
used by previous authors [13, 6]. As seen in Fig. 5, these se-
quences are particularly challenging. They include various
dynamic textures (steam, water splashes and ripples, smoke,
etc.), some recorded with a moving camera. We are able to
segment these textures with very precise contours. Athough
no ground truth is available, our results are qualitatively as
good or better than those of existing methods [13, 6].

6.2. Object boundaries

Next, we consider the task of segmenting objects from
their motion boundaries on the CMU dataset [35]. This has
previously been addressed, both with unsupervised segmen-
tation approaches [39] and specific methods using classi-
fiers trained on candidate boundaries (edges) in the image.
The dataset is challenging, as it includes a mix of rigid and
non-rigid motions, caused by parallax at different depths
and by intrinsic motion (animals and humans). This dataset
contains 30 sequences, which we use to train a similarity
metric using segment annotations as in Section 5. We show
in Fig. 3 how our optimization algorithm is able to find a
distance measure that predicts the probability of merging
pairs of adjacent segments (plotted using the ground truth
for visualization), with a large margin between the two.
This translates into a significant improvement in segmenta-
tion over the unsupervised case (Fig. 6, upper). We are able
to recover object boundaries with performance close to the
state-of-the-art methods of this dataset. Superior methods
make use of other cues such as geometric characteristics of
the boundaries and the segments. One possibility to explore
within our framework would be to extend the learning of the
distance measure to a general function that uses character-
istics of segments other than arithmetic differences between
histograms.

We also evaluate the effect of dimensionality reduction
of the segment descriptors (Fig. 6, lower). We observe again
the desirable smooth reduction in performance with smaller
segment descriptors, that allows significant improvement in
memory usage for neglibile or only a modest loss in accu-
racy. The smaller dimensionality once again proves bene-
ficial in avoiding the over-fitting of the training data. We
compare the proposed dimensionality reduction, optimized
jointly with the metric, against a trivial projection on the
largest PCA components (Fig. 6, lower). It shows a clear
advantage for the joint approach that integrates both goals
of a small descriptor size and a highly discriminative metric.



Color only Color + proposed motion features
Input LDT [5] Unsupervised [18] Unsupervised Learned metric

Method Avg. Rand (%)
Features Metric
Color Unsupervised 59.9
Color + motion Unsupervised 72.7
Color + motion Learned, logistic regression 77.1
Color + motion Learned, ITML [9] 86.4
Color + motion Learned from manual segm. 89.7
Color + motion Learned from manual segm. 90.2

and semantic labels (p=d)
GPCA [33] 55.4
LDT [5] (with manual initialization) 89.4
DTM (CS) [3] (static segments) 82.5
(LBP/WLD)TOP [6] 88.4
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Figure 4. We obtain state-of-the-art results on the segmentation of dynamic textures (SynthDB dataset), as measured by the Rand index
averaged over the 100 test sequences. (Lower right) The proposed dimensionality reduction allows only a modest decrease of performance
while improving the memory footprint by a factor of more than 10.

Fazekas et al. [13] Chen et al. [6] Proposed Fazekas et al. [13] Chen et al. [6] Proposed

Figure 5. Segmentation of dynamic textures in complex scenes of the Dyntex dataset. We recover much more precise boundaries than
existing methods. (a) Steam coming from a ventilation system, (b) A narrow creek winding between pebbles, (c) Steam while cooking on
a campfire, (d) Closer shot of the same scene, (e) Water falling over round pebbles and gathering into a pool, (f) A canal and shoreline in
Amsterdam. Sequences (a,b,d,f) were shot with a moving camera.

6.3. Rigid motions

We now consider the segmentation of rigid motions with
the MIT human-labeled dataset [28]. It features objects
with intrinsic motion (e.g. car, dog) and parallax-induced
motions at different depths. Due to the small size of the
dataset (only 9 sequences), we perform leave-one-out eval-
uation. Segmentation with the learned distance function
provides a small improvement over unsupervised segmen-
tation for most sequences of the dataset. We believe the
limited advantage of the supervised approach on this dataset
is due to the relative ease for segmenting rigid motions us-
ing unsupervised methods. The small amount of training

data makes the learning approach prone to overfitting. The
“hand” sequence, for example (Fig. 7), performs poorly,
as the learning downweights the appearance features (since
training annotations correspond mostly to rigid motions),
even though they alone lead to a perfect segmentation in the
unsupervised setting. The small training set is also the most
likely reason why adapting the metric to multiple scales
(Section 5.2) does not result in any improvement. Overall,
we still perform better than a number of existing methods
[36, 37], and close to the state-of-the-art results reported in
[39] (see Fig. 7 and details in supplementary material).

We compare the proposed learning algorithm with a
baseline solution using logistic regression, and with the



Input Ground truth Color-based Proposed
segments supervoxels [18]

Boundary Boundary Segments
Method F-measure (%) AP (%) Rand (%)
Features Metric
Color histograms only Unsupervised 51.1 43.2 60.3
Color + motion Unsupervised 60.8 61.8 68.3
Color + motion Learned as proposed, S=1 64.1 65.3 72.1
Color + motion Learned as proposed, S=2 64.3 65.4 72.3
Color + motion Learned as proposed, S=3 64.4 65.5 72.4
Stein and Hebert [35] 66.7 63.7 —
Sargin et al. [32] 57.0 58.0 —
Sundberg et al. [38] 61.0 72.0 —
He et al. [21] 47.0 43.0 —
Teney and Brown [39] 60.7 56.3 —
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Figure 6. (Left) Object segmentation from occlusion boundaries on the CMU dataset of sequences with camera translation. (Upper-
right) Our results, in terms of F-measure of segment boundaries (64.4%), are comparable with the best existing task-specific methods.
(Lower-right) The proposed dimensionality reduction, optimized jointly with the metric, performs significantly better than a naive projec-
tion on the first d PCA components followed by unsupervised segmentation. This highlights the importance of considering dimensionality
reduction and metric learning as a combined objective.

Input Ground truth Color only Color + proposed motion features
segments Unsupervised Unsupervised Learned metric Method Avg. Rand (%)

Features Metric
Color histograms only Unsupervised 68.5
Color + motion Unsupervised 78.8
Color + motion Learned, logistic reg. 76.3
Color + motion Learned, ITML [9] 70.3
Color + motion Learned as proposed, S=1 83.0
Color + motion Learned as proposed, S=2 81.1
Layers++ [36] 77.5
nLayers [37] 82.3
Teney and Brown [39] 83.2

Figure 7. Motion segmentation on the MIT human-labeled dataset. Most sequences benefit from the learned approach, but the small size
of the dataset increases the risk of overfitting. The annotations, which correspond to rigid motions, tends to downweight the appearance
features, even though they were sufficient alone for segmenting the “hand” sequence (last row of images).

state-of-the-art ITML algorithm. From our observations,
a distance based on a linear logistic regression does not
offer enough degrees of freedom to capture relevant rela-
tionships between dimensions of the segment descriptors.
This supports the choice of a generalized Mahalanobis as
the learned metric. Conversely, the ITML algorithm seemed
either prone to overfitting, or unable to model the relevant
training constraints, most likely due to the rigid regularizer
(using an identity matrix as the reference as in [9]).

7. Conclusions and future work
This paper discussed the segmentation of videos of dy-

namic scenes using a novel combination of filter-based mo-
tion features and a supervised learning approach. We use
the responses to a large bank of spatiotemporal filters to
capture a wide range of phenomena, including cases where
optical flow fails [39]. We use these features within a graph-
based video segmentation algorithm, that we extend via a

learned metric to measure the dissimilarity between seg-
ment. The objective metric learning includes a reduction
of dimensionaility of the descriptors, which alleviates the
large memory requirements of the original algorithm [18].
We obtained state-of-the-art results on the segmentation of
dynamic textures and demonstrated wider applicability to
general motion segmentation, with results comparable to
the best task-specific methods. One insight brought by this
extensive evaluation is that a general-purpose video seg-
mentation framework can be successfully applied to a va-
riety of tasks by incorporating specific rules learned from
annotated, manually segmented videos. As noted before
[16, 28], there is an obvious bias in human annotations and
in each dataset, and it will be interesting in the future to ad-
dress the learning of more general rules and cross-dataset
performance. This should involve the annotation or the
addition of more dynamic textures in video segmentation
benchmarks.
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