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Abstract

Multi-View-Stereo (MVS) methods aim for the highest
detail possible, however, such detail is often not required.
In this work, we propose a novel surface reconstruction
method based on image edges, superpixels and second-
order smoothness constraints, producing meshes compara-
ble to classic MVS surfaces in quality but orders of mag-
nitudes faster. Our method performs per-view dense depth
optimization directly over sparse 3D Ground Control Points
(GCPs), hence, removing the need for view pairing, im-
age rectification, and stereo depth estimation, and allowing
for full per-image parallelization. We use Structure-from-
Motion (SfM) points as GCPs, but the method is not spe-
cific to these, e.g. LiDAR or RGB-D can also be used. The
resulting meshes are compact and inherently edge-aligned
with image gradients, enabling good-quality lightweight
per-face flat renderings. Our experiments demonstrate on
a variety of 3D datasets the superiority in speed and com-
petitive surface quality.

1. Introduction

Automatic 3D modelling of real urban environments has
been a long-term challenge [40], and has a wide range of
applications such as cultural heritage, entertainment, real
estate business, navigation and urban planning. Companies
like Google, Apple and Acute3D have automated 3D urban
model creation using Multi-View Stereo (MVS) technolo-
gies. These solutions rely on aerial data, as to meet the large
scale requirements. The resulting, textured meshes lack fa-
cade details, however. Yet, many applications would benefit
from facade-level details or the related semantics.

The alternative is to use street-level acquisition. In this
vein, image-based Multi-View Stereo (MVS) has also been
used, at least at a city district scale [29, 38, 18, 57]. These
methods tend to be too slow for larger scenes for several
reasons. They often enforce pixelwise photo-consistency
across multiple views, and deliver very dense point clouds
or depth maps that need extra meshing steps to obtain more
compact surfaces. Leaving them as such comes with a high
toll on the required storage space and visualization work-

Figure 1. Given only sparse SfM data and a single view (left),
our lightweight method produces a mesh aligned to image con-
tents fast (seconds) (top). The approach is general but particularly
promising for scalable LoD-3 street-level city modeling. Bottom:
output of a state-of-the-art multi-view stereo software [29].

load. In case of volumetric MVS, like the GPU-based CMP-
MVS [29], a street scene can cost multiple hours.

In turn, our aim is to develop a fast image-based surface
meshing approach to cover large city areas at the level of
a CityGML LoD-3 model, i.e. the geometry of buildings to
be captured precisely, with indications of architectural com-
ponents like windows being set back or balconies sticking
out. However, we additionally experiment with reliefs, and
believe that our meshing could be applied in other scenar-
ios, e.g. indoor scenes, replacing SfM with LiDAR points,
or when dense 3D data (e.g. RGB-D) is already available.

In this paper, we present a novel approach to directly ob-
tain a 3D surface mesh from a set of images and from sparse
Structure-from-Motion (SfM) data, which we assume to
have been pre-calculated, e.g. from the same set of im-
ages. This is in contrast to the classical approach of recon-
structing a highly detailed pixelwise dense model via MVS
and then apply simplification and meshing at the expense
of even more processing time. As we demonstrate, SfM
can already give sufficient 3D data to treat the problem as
many single-view surface fitting problems with small over-
lap between the views. By incorporating superpixels and
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image edges, our method produces compact meshes as it
ensures that mesh edges (and vertices) are aligned with im-
age gradients, unlike in existing solutions. Edge-alignment
enables semantic segmentation [47] and visually pleasing
renderings with simple per-face coloring, thus eliminating
complicated texturing procedures (e.g. atlases) in many ap-
plications. Surface fitting is formulated in a novel way to
be solved with an efficient linear solver. As a result, depths
can be computed in a split-second on a CPU, and despite the
sparse 3D input, the quality of the resulting meshes is com-
parable to that of a state-of-the-art pipeline, e.g. [29]. See
Figure 1 for a first qualitative comparison of the surfaces.

Treating the surface reconstruction problem as many
single-view ones has several advantages in itself. First, a
single observing view is sufficient to reconstruct a certain
surface area (no need for pairwise rectifications). Second,
the overall runtime is linear in the number of views or sub-
linear in case a view selection is run beforehand. Third, it is
parallelizable per view. To model large scenes, our single-
view meshes can be simply concatenated and trimmed, like
in [41], as they are already quite consistent.

The traditional bottleneck of dense depth estimation,
including photoconsistency calculations, is avoided alto-
gether. As we show, our method outperforms pixelwise
MVS methods in speed, and by a natural per-view paral-
lelization, it can be further speeded up by 1-3 orders of
magnitude, thereby bringing large-scale ground-level city
modelling within reach.

2. Related Work
Structure-from-Motion (SfM) has been scaled up to han-

dle entire city districts [2, 18, 67, 11]. Herein, we give an
overview of existing surface modeling techniques, assum-
ing SfM data at hand.

Multi-View Stereo (MVS). Volumetric methods partition
the scene into cubic voxels [52, 58, 23], tetrahedra [29, 60]
or polyhedral cells [9], and classify these as inside/outside.
Volumetric methods are known to produce watertight but
non-smooth surfaces [33] and suffer from poor scalabil-
ity [29]. Still, they found their application for large-scale
urban scenes via aerial images [9, 23]. Recently, Hoppe et
al. [28, 27] found a way to locally update their tetrahedral-
ization, and the inside/outside reasoning as new evidence
arrives from SfM, and obtain an updated mesh on-the-fly.

CMP-MVS [29] is a free, state-of-the-art volumetric tool
producing high-quality meshes. It takes hours to reconstruct
a street-level scene on a GPU from hundreds of images.

Due to its better scalability, depth map based MVS [45]
has been demonstrated on ground-level images of urban
scenes at city block scale [44, 38].

Simplifications. Pollefeys et al. [44] present a real-time
system using plane-sweep stereo on the GPU [21], given

orientation and plane priors derived from SfM point clouds.
Micusik and Kosecka [38] extend plane sweeping by ag-
gregating surface data per superpixel to stabilize textureless
areas. Furukawa et al. [17] provide speedup by simplifying
to piecewise-planar Manhattan-world geometry. Gallup et
al. [20] segment planar/non-planar (mostly vegetation) re-
gions to identify areas that can be simplified.

Aiming at city visualization, [46] exploits the 2.5D
height map assumption for urban scenes, whereas [22] re-
laxes this to an n-layer height map. Cornelis et al. [10] re-
construct a simplified canyon-like street model with planar
ground and ruled vertical surfaces for the facades, thereby
allowing for real-time processing.

These methods work fast yet rely on the Manhattan-
world assumption or simplify facade models to an extend
that important (LoD-3) details are lost.

Another line of work starts from ortho-rectified facade
images [56, 37] or uses SfM multi-plane fits for rectifi-
cation [48, 69], and perform a semantic/procedural analy-
sis [47, 36] of these to obtain LoD-3 facade details.

Mesh Alignment. Given a coarse mesh, missing details
can be recovered by re-aligning the mesh to the images.
Morris et al. [39] perform a search for the most photo-
consistent triangulation over a sparse set of 3D control
points. Surface evolution techniques [59, 60] have a sim-
ilar objective but are driven by expensive variational formu-
las. These works enforce photo-consistency over the mesh
faces, but do not align the edges of mesh triangles to the
image content: triangles may cross geometric edges and
semantic boundaries. [43, 12] propose methods to refine
details of a surface using photometric stereo or bundle ad-
justment, and manage to recover incredibly fine details. Re-
cently, Salman and Yvinec [49] proposed a MVS algorithm
that samples mesh edges in the vicinity of image edges. Un-
like ours, their method operates on dense MVS points, en-
forces points as hard constraints, and is orders of magnitude
slower, even without computing the dense input.

Direct Fitting to SfM. Several methods have been intro-
duced to model the scene directly from sparse SfM data.
Most of these assume piecewise planarity and do not handle
non-planar regions [64, 54, 15, 53, 4]. In addition, similarly
to Manhattan-world methods and plane sweeping stereo,
many rely on a prior analysis of the SfM point cloud, that
involves computation and clustering of normals or robust
multi-plane fitting. In our experience, these preprocessing
steps have serious stability issues over a sparse point cloud.

Probably the most well-known way to convert a point
cloud to a mesh is via the Poisson method [30]. It assumes
a uniform point distribution, and tends to perform poorly
on sparse SfM data, which is inherently non-uniform. In
turn, Multi-Scale Compactly Supported Radial Basis Func-
tion (MSCS-RBF) [42, 8] are applied successfully by New-
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Figure 2. Our approach for single-view mesh reconstruction from sparse SfM data. (a) 3D/2D point cloud analysis returns 2D outlines of
the areas populated by SfM points, (b) 2D base mesh extraction from the image, (c) reconstructs submeshes of (b) in the polygons of (a).

come and Davison [41] to fit a coarse base mesh directly
to SfM points from each reference view. Similarily, sev-
eral works from the stereo literature perform surface fits
to sparse Ground Control Points (GCPs). Geiger et al. [24]
compute a 2D Delaunay-triangulation over GCPs to reduce
the stereo search space, while Wang and Yang [61] apply
GCPs as hard constraints to interpolate a pixelwise dis-
parity map in a linear formulation. A pioneering work in
stereo [16] solves this interpolation with soft constraints.
The recent video summarization work by Kopf et al. [32]
fits a proxy mesh to SfM data for image-based rendering,
but their mesh is not subdivided according to image content,
and they use a smoothness prior favoring fronto-parallel
planes (a 1st-order constraint).

Another line of work attempts to learn depth cues in a
training stage to reconstruct the scene from a single im-
age [26, 51, 34]. To render the task feasible, they rely on
strong assumptions about the scene (e.g. Manhattan world).
Particularly related to our work is that by Saxena et al. [50],
where image cues and sparse GCPs within superpixels are
combined to infer a piecewise-planar 3D model. These ap-
proaches come at the expense of geometric detail, however.

In contrast to these methods, we propose to reconstruct
the scene directly by fitting meshes from single views to the
sparse SfM points, without assuming a few dominant orien-
tations, a Manhattan-world or piecewise planarity. Inspired
by GCP-based interpolation-style linear methods [16, 24,
61, 32], we propose a sparse linear method using GCPs as
soft constraints. However, our method operates over a tri-
angular mesh per view, rather than on a pixelwise map, and
it uses a 2nd-order smoothness prior, i.e. it favors planarity
(penalizes curvature), instead of fronto-parallel planes. Our
meshes are based on the images (e.g. superpixels), and are
inherently edge-aligned with image gradients.

3. Single-view 3D mesh reconstruction
In this section we detail our single-view mesh recon-

struction method. We propose an image-driven mesh, i.e. a
mesh that is adapted to the image content. Mesh edges get
aligned to image edges, and mesh faces tend to cover ho-
mogeneous image areas only as densely as needed. These
properties lead to a quite compact surface model, and good

visual quality, especially well-suited for textureless per-face
flat rendering, i.e. when each triangle is colored according
to its mean color in a base image.

Our method consists of three major stages, as summa-
rized in Figure 2. First, the SfM points (our GCPs) are clus-
tered to group and identify disconnected 3D structures (2a).
Second, independently from SfM, we extract a 2D base
mesh aligned to image gradients (2b). Third, vertex depths
are calculated using the GCPs as soft-constraints and favor-
ing local smoothness (2c). These steps are detailed in the
next sections, starting with the base mesh.

3.1. 2D base mesh extraction

We propose an image-driven reconstruction which uses
the image gradients to partition each image independently,
similarly to superpixelization. The partitioning is embodied
in a 2D base mesh, that is later reconstructed in 3D. Con-
trary to related work [63, 71], we do not limit the final mesh
to a single depth per partition (fronto-parallel). Note that we
start from an image-aligned 2D mesh, then reconstruct ver-
tex depths, instead of first obtaining a 3D mesh (e.g. from a
dense depth map) and then tuning it to the images [59, 60].

We have experimented with three methods to create 2D
triangle meshes adapted to the image gradient informa-
tion (as shown in Figure 3): (a) Delaunay triangulation of
corner-like keypoints (e.g. Harris-corners), (b) Constrained
Delaunay triangulation of polygonized binary image edges,
and (c) Constrained Delaunay triangulation of polygonized
superpixel boundaries. The constrained Delaunay triangu-
lation in cases (b) and (c) enforces the extracted polygon
edges into the triangulation. In case (a) the triangle count is
moderated by only retaining the n-best corners. We apply
Douglas-Peucker polygon simplification with a low toler-
ance (1-3 pixels), prior to constrained triangulation. This
drastically reduces the number of polygon vertices while
still preserving image edges. Increasing the triangle count
typically improves the edge-adherence of the triangulation
but increases the number of vertices to reconstruct.

3.2. Depth reconstruction

We consider the problem of dense single-view depth
(mesh) reconstruction, given the image, the perspective



Figure 3. Different ways to obtain 2D image-aligned triangle mesh. Rows: (a) Delaunay Triangulation (DT) over image corners, (b) con-
strained DT over polygonized gradient edges, (c) constrained DT over polygonized superpixel boundaries. Columns: (1) Harris cornerness
score / Canny edge map / superpixel label map, (2) original image with Harris corners and polygonized boundaries in blue, (3) constrained
Delaunay triangulation over its mean-color rasterization (visible SfM points as black crosses), (4-5) 3D reconstruction obtained from sparse
SfM data with our method introduced in Section 3.2.

camera model, and known depths at sparse 3D locations,
i.e. Ground Control Points (GCPs). Our GCPs are points of
an inhomogeneous sparse or semi-dense SfM point cloud,
and we exploit the image-driven 2D triangulation described
in Section 3.1. Unlike most superpixel-stereo methods, we
relax the requirement that each superpixel (polygonal image
region) observes a single plane or parametric 3D patch. In-
stead, our elementary units are triangles derived from such
polygons, and we aim to reconstruct the depths at triangle
vertices, while additionally favoring smoothness. This idea
saves us from the need of explicitly enforcing continuity
across individual 3D patches, since it is naturally and ex-
actly satisfied in the proposed approach (please refer to the
supplementary material for a visual comparison).

We assign GCPs to triangles efficiently via triangle ras-
terization and by sampling the raster map at GCP locations1.
To reconstruct the depths {d̂i} at vertices V = {vi}Vi=1,
we rely on the GCPs P = {pi}Ni=1 with known respective
depths {di}. We require the 3D triangles to fit the observed
GCPs and that triangles are smoothly connected. We for-
mulate this as the minization of a fitting and a smoothness
term:

E(d̂) = Efit(d̂;d) + λEsmooth(d̂), (1)

where d̂ and d are the vectors of vertex depths and GCP
depths, respectively, and λ is a scalar balance between fit-
ting quality and smoothness.

We propose to use a least-squares formulation and linear

1Our method is robust to the assignment errors due to rasterization.

interpolation via barycentric coordinates to obtain a sim-
ple quadratic form for (1), which can be efficiently min-
imized. Any GCP pi belongs to a triangle ti defined by
some vertices {vp, vq, vr}. Hence, pi can be written as
pi = αpivp + αqivq + αrivr, where (αpi, αqi, αri) are the
barycentric coordinates of pi w.r.t. ti. The linearly interpo-
lated (known) depth of the GCP from the (unknown) depths
of the vertices is d̃i = αpid̂p + αqid̂q + αpid̂r. Collect-
ing the equations for all GCPs, we obtain the matrix form
d̃ , (d̃1, . . . , d̃N )T = Ad, where A is a N × V sparse
matrix with up to 3N non-zeros. The unary term writes as

Efit(d̂;d) = (d−Ad̂)TΣ−1(d−Ad̂), (2)

where Σ is the covariance matrix of the GCP depths d.
To obtain a comparably simple form for the smoothness

term, most existing methods use a simple squared penalty
for the depth differences [16, 61, 32]. This favors fronto-
parallel planes. In turn, we present a different formulation
that penalizes curvature, yet in a linear fashion. We con-
sider, for each vertex vi, the triangle tij formed by a neigh-
boring vertex vj and its previous and next adjacent vertex
v−j and v+j in the oriented 1-ring neighborhood of vi (see
the right side of Figure 4), and linearly interpolate the (un-
known) depth d̂i of vi from the (unknown) depths of vj , v−j
and v+j via barycentric coordinates, namely,

d̂ij = βij1 d̂j + βij2 d̂
+
j + βij3 d̂

−
j (3)

In case the triangles on the two sides of the edge {vi, vj}
are in the same plane, the interpolated depth d̂ij equals d̂j .
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Figure 4. Distinction between Delaunay triangulation over GCPs
(SfM+DT, left) and our base mesh (right). 1-ring vertex neighbors
are used to calculate our smoothness term penalizing curvature.
The depth difference of vi w.r.t the dashed triangle is penalized.

To favor local smoothness, we penalize for the difference
between these. A weighting term wij can be used addition-
ally, based on the observed color difference of the two tri-
angles meeting in edge {vi, vj}. This is useful to relax the
planarity requirement at crease edges, which are likely to be
observed in the image. A single penalty term formulates as

Eij = w2
ij(d̂i − d̂ij)2 = w2

ij(b
T
ijd̂)

2, (4)

where bij ∈ RV is a vector containing only the 4 non-zero
elements {1,−βij1 ,−β

ij
2 ,−β

ij
3 }. Collecting all constraints

in a matrix form, the pairwise term in (1) becomes

Esmooth(d̂) = d̂TBTW2Bd̂, (5)

where B is a sparse matrix formed of the row vectors bTij ,
and W = diag{wij} is the color-weighting matrix. After
substitution of (2) and (5) into (1), and differentiation, the
minimization of (1) boils down to solving

(ATA + λBTW2B)d̂ = ATd. (6)

for the vertex depths d̂ given the GCP depths d. This is
a sparse linear V × V system (V the number of vertices),
which can be solved efficiently by using a linear solver.

3.3. Point clustering and α-shapes

Reconstruction of a 2D base mesh covering the whole
image with the method of Section 3.2 results in a watertight
“blanket“ over the full field of view, undesirably closing dis-
continuities. Therefore, we follow a conservative strategy:
we identify (probably concave) image regions with suffi-
cient SfM support per view, and reconstruct (the submesh
observed within) each of these regions separately.

First, we cluster the subset of 3D points observed per
view (Figure 2a), rather than clustering the full point cloud
at once. This highly increases the chance that point clusters
on surfaces separated in depth end up in different groups.
A region growing in the 3D k-nearest neighborhood, with a
greedy choice of seeds (preferring points with denser neigh-
borhood) proved to be sufficient. It identifies outlier SfM
points as unassigned points, which we remove prior to fit-
ting. Other clustering algorithms could also be used here.

Second, the observed 2D shape of each point cluster is
extracted via standard α-shapes [13]. This returns a set of

triangles of the 2D Delaunay-triangulation over the points.
This triangulation, defined over projected SfM points, is dif-
ferent than our 2D base mesh (see Figure 4). The lowest α
value resulting in only manifold vertices is found automati-
cally by trying out increasing values {αi}. This guarantees
that the outline of each α-shape component can be unam-
biguously extracted as the longest polygonal boundary. The
largest (worst-case) αi value is set to∞, which corresponds
to the convex hull of the 2D point cluster. As a result, each
region sufficiently populated by SfM point observations is
circumscribed by a polygon (Figure 2a). These polygons
are used to cut out submeshes of our image-aligned 2D base
mesh, which are then subject to separate reconstruction.

3.4. Identifying discontinuities and occlusions

The methods in Section 3.3 already handle major dis-
continuities, but surfaces with self-occlusions may survive
that procedure as a single point cluster. This results in
self-occlusion discontinuities closed. If discontinuity seams
over consecutive edges were known, the 2D mesh could
be simply modified to incorporate these seams into the re-
construction. Unfortunately, they are difficult to locate at
edge precision, and mislocating them can lead to unpleasant
boundary artifacts. Thus, we rather identify discontinuities
as groups of faces that are observed in sharp angles in an
initial reconstruction (see Figure 5 for an example).

Figure 5. Example for discontinuity detection: input image and
SfM points (left), reconstructed model after point clustering, ob-
servation angles color-coded (middle), segmentation result (right).

We formulate this problem as a binary segmentation over
all F mesh faces {fi} by minimizing

E(L) =
F∑
i=1

Edisci (li) + λdisc ·
∑
{fi,fj}

eijI[li 6= lj ] (7)

over a labelling solution L = {l1, . . . , lF }, where li ∈
{0, 1} is a binary label for face fi, indicating whether it
is a discontinuity. eij · I[li 6= lj ] is a weighted Potts penalty
where eij is the relative edge length between face fi and fj .
The unary term measures the observed angle of a face as
Edisci (0) = φi and Edisci (1) = 1− φi with

φi = exp{− 1
2σ2 (v

T
i ni)

2)} (8)

where ni is the unit-normal of face fi, and vi is the viewing
direction of the centroid ci of fi. We solve (7) via graph-
cuts [6, 5, 31], remove the segmented discontinuity trian-
gles, and recompute the depths at the remaining vertices for
each α-shape separately.



Figure 6. Results for different methods on the Herz-Jesu (top) and Mirbel datasets (bottom). Columns: (1) CMP-MVS mesh, (2) SfM+DT:
2D Delaunay triangulation over SfM points, (3) FS+Fronto+Soft: depths of FS superpixels with fronto-parallel assumption and SfM points
as soft-constraints, (4) our method over FS superpixels. Rows: bare geometry and untextured mesh with per-face mean coloring. Note the
level of detail our method can capture from only the sparse SfM data (inlier SfM points are at DT vertices in the 2nd column).

SfM Ours PMVS2 CMP-MVS Input 8× GPU 1×
Dataset Images(±) Resolution #pts #tri/im #pts #tri tmatch tsfm tpmvs2 tcmp tours tpar
Street Z 630 (630) 800×1200 238.9k 15.4k 1 620k 3 927k 16051s 207s 1624∗ 24061s+ 1171s 1.9s
Street P 428 (10) 800×1067 365k 13.4k 1 630k 4 697k 710s 811s 1290s∗ 16143s+ 843s 2.0s
Street M 26 (26) 800×1067 19.5k 14.2k 93.3k 1 253k 45s 4s 49s∗ 1083s+ 50.9s 2.0s
LeuvenCastle 28 (28) 800×600 16.2k 9.1k 29.6k 586.0k 69s 3s 28s∗ 825s+ 32.3s 1.2s
Medusa 15 (15) 800×640 16.3k 9.4k 30.8k 536.1k 19s 1s 16s∗ 470s+ 18.0s 1.2s
Fountain 11 (11) 1024×683 13.5k 10.1k 44.5k 707.9k 8s 1s 20s∗ 468s+ 16.3s 1.5s
HerzJesu 8 (8) 1024×683 8.3k 10.4k 35.2k 492.5k 7s 1s 16s∗ 334s+ 10.6s 1.3s
Dionysos 8 (8) 800×600 4.1k 7.3k 17.4k 243.3k 7s 1s 16s∗ 229s+ 10.0s 1.3s
MertonVI 6 (6) 1024×768 2.1k 13.3k 10.8k 180.5k 2s 1s 9s∗ 123s+ 9.9s 1.7s

Table 1. Datasets and timings. ∗8-core parallelism, +GPU usage. tours is given for single CPU core. ± indicates the number of previous
and next images considered for matching. tpar is the runtime of our method for a single view (views fully paralellizable after SfM).

4. Results
We tested our method on landmark scenes (Mer-

tonVI [64], Herz-Jesu [55] and LeuvenCastle [45]), our
medium to large-scale street scenes M, Z, P ranging to over
600 images, as well as on relief sequences (Medusa [45],
Fountain [55] and Dionysos), see Table 1. We used SfM
data produced by VisualSfM [66, 68] with SiftGPU [65].

Qualitative evaluation. Figure 6 compares our single-
view method to the state-of-the-art multi-view stereo tool
CMP-MVS [29], and to two baseline methods that esti-
mate a depth map given sparse depths at GCPs in a sin-
gle view. The first method (SfM+DT) uses a Delaunay-
triangulation over 2D observations of SfM points, which
is lifted to 3D via the known SfM depths to obtain a 3D
mesh (see also Fig. 4, left). This is exploited in [24]

for stereo and in [49] for MVS. The second method
(FS+Fronto+Soft) operates over (FS [14]) superpixels, as-
sumes a single depth per superpixel (fronto-parallel plane),
estimates the depths by using the known SfM point depths
as soft-constraints while smoothing by penalizing for color-
weighted depth differences between superpixels. Different
aspects of FS+Fronto+Soft are motivated by [71, 16, 32].
For a fair evaluation, all methods are applied after the
point clustering proposed in Section 3.3, i.e. after remov-
ing SfM outliers. Figure 6 demonstrates that meshes of
SfM+DT have triangles crossing actual crease edges as the
method is not aware of observed edge locations. Also, it
is fully susceptible to noise in the SfM points, as it uses
them as hard-constraints. SfM+DT has the advantage over
FS+Fronto+Soft that it keeps the mesh naturally watertight.
The piecewise-continous assumption of FS+Fronto+Soft



makes it difficult to produce a watertight mesh. This
also holds for slanted-plane stereo methods by principle
(e.g. [62, 70]), the fronto-parallel assumption [63, 71] only
emphasizes the problem. In turn, our method respects ge-
ometric edges, produces a connected mesh (per α-shape),
and the mesh captures the important crease edges of the
structure, which are observable as image edges.

For further models produced by our method, we refer to
Figure 9 and the supplementary material.
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Figure 7. Cumulated histograms of pixelwise depth errors over all
images of Herz-Jesu w.r.t. the LiDAR mesh [55] (left) and Street M
w.r.t. the CMP-MVS [29] mesh (right). Three vertical markers are
at the size of a stair, 1 meter and door height for Herz-Jesu, and
window depth, width and floor height for Street M.

Depth accuracy. We evaluate the accuracy of our meshes
w.r.t. a high-resolution reference meshMr. In comparison,
we evaluate the methods SfM+DT, FS+Fronto+Soft, CMP-
MVS introduced above, and also compare to the accuracy
of the source SfM point cloud, of the dense point cloud
produced by Patch-based Multi-View Stereo, PMVS2 [19],
and of the method FS+Fronto+Hard which is similar to
FS+Fronto+Soft but applies the known sparse point depths
as hard constraints (motivated by [61]).

The discrepancy between a mesh M and the reference
mesh Mr is measured by comparing the depth maps ren-
dered of the two meshes from the same viewpoint i, know-
ing the camera matrix Pr

i . In the same vein, the depths of
points w.r.t. view i are compared to the depth maps ofMr

in the views according to the visibility information from
SfM/PMVS2. We collect the pixelwise/pointwise absolute
depth errors for all views of a dataset, and compute the cu-
mulated density function of the errors. Figure 7 shows the
error curves for the Herz-Jesu and Street M datasets. For
Street M, we use the high-resolution CMP-MVS mesh as
reference mesh Mr, whereas for Herz-Jesu, the publicly
available LiDAR mesh [55] is used as ground-truth. To
compare the reconstructed meshes given in the SfM frame
to the LiDAR mesh given in a metric frame, a precise regis-
tration procedure is carried out between the frames via the
known SfM points, ground-truth cameras and depth maps.

In Figure 7, vertical markers are placed at meaning-
ful scales, e.g. stairstep/door/floor height. The higher the
curve of a method, the higher the precision. The plots
consistently show that state-of-the-art dense-MVS methods

(CMP-MVS, PMVS2) provide the highest precision. The
proposed single-view surface fitting method (black curve)
has higher accuracy than all tested single-view baseline
methods (SfM+DT, FS+Fronto+Soft, FS+Fronto+Hard),
and has comparable accuracy of dense-MVS methods in the
scales particularly interesting for city scenes (e.g. starting
around the depth of a window or the height of a stair).
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Figure 8. Errors of a per-face flat rendering for different 2D trian-
gulation methods in function of the triangle count per image, for
two different datasets. Errors are relative to those of a triangula-
tion over uniform random points. The curves are averages over
all images at each triangle count. For SfM-DT (+), each marker
corresponds to the error of a single triangulation per image.

Rendering quality. In Figure 3, we present different ways
to obtain our 2D base mesh. To evaluate these, we rasterize
the 2D mesh with mean image colors per triangle – which
is equivalent to rendering the 3D mesh from the particular
viewpoint with per-face flat coloring – and compare the ras-
terized image to the original one. We measure the discrep-
ancy by averaging absolute differences over color channels,
pixels and all images. This rendering quality implicitly in-
dicates how well the decomposition is aligned with image
edges, e.g. for semantic classification or visualization.

Figure 8 compares Delaunay triangulations over Harris
corners [25], polygonized Canny edges [7], and polygo-
nized FS [14], SEEDS [3] and SLIC [1] superpixel bound-
aries, for the Herz-Jesu and Street M datasets. For each
method, we vary its core parameter (e.g. Canny threshold)
to obtain different triangle counts. As a baseline, we evalu-
ated triangulations on top of n uniform random points over
the image (rand method), and report all accuracies relative
that of rand. For comparison, we also show the result of
SfM+DT introduced earlier, i.e. a triangulation over pro-
jected SfM points (originating from SIFT [35] points in Vi-
sualSFM). We conclude from Figure 8, that FS and SLIC
superpixels (slightly slower) approximate the image best
at any number of triangles, while Harris corners and the
SfM+DT give the lowest accuracy. The fastest methods,
SEEDS and Canny reside in between.

Timings. Particularly positive aspects of our method are its
speed and potential for parallelization. Table 1 shows tim-
ings for different datasets processed on a single 3.4 GHz



Figure 9. Some of our results (for close-up views or further models, please refer to the supplementary material). Top: output model (right)
computed from the single input image and the overlaid SfM points shown on the left for Medusa, Dionysos and Merton VI. Below, two
of our large-scale results: Street Z (middle) and Street P (bottom). Colored and uncolored single-view meshes are displayed jointly from
all views without volumetric mesh fusion. The colored vertices of all single view meshes are also separately shown as point clouds. All
models shown in this paper are rendered without texture, by using per-face flat coloring with mean colors taken from the images.

CPU core in Matlab2. After SfM, the largest dataset of
630 images of around 1 MPixel is processed in 28 minutes
(non-parallel) vs. 6.7 hours of CMP-MVS, which uses a re-
cent GPU. PMVS2 returns a semi-dense point cloud in 27
minutes but using 8-core parallelism. Our algorithm spends
around 0.8-3 seconds per 1 MPixel image, depending on the
triangulation method. The majority of this time is spent on
2D base mesh extraction, and the actual depth reconstruc-
tion (with discontinuity segmentation) runs in less than 0.3
seconds per view in Matlab. Moreover, our method is fully
parallelizable per image (see last column of Table 1).

5. Conclusions
In this work, we proposed a novel method for direct

mesh reconstruction from single images and sparse SfM
data. Our method ensures that the reconstructed meshes are
edge-aligned with image gradients yielding a fairly compact
surface representation, yet allowing for good-quality tex-
tureless rendering. Unlike many other methods, our depth
optimization operates on mesh vertices and penalizes cur-
vature, rather than favoring fronto-parallel planes, which
leads to cleaner surfaces and inherent watertightness where
needed. Grace to our linear formulation, an efficient sparse

2A majority of low-level tasks are implemented as C++ MEX.

linear solver already renders the method fast on CPU. Our
approach is fully parallelizable per single view (unlike MVS
approaches), and is linear in the number of views. It does
not rely on dominant orientations (e.g. Manhattan-world),
normal computation/clustering or direct plane fitting, which
are hard to stabilize over sparse data. This work treats
surface modeling as many single-view problems, and did
not aim to do volumetric mesh fusion, as such methods
would ruin good scalability or edge-alignment. If merging
is needed anyway, we found that Poisson remeshing [30]
works well over our meshes. As the meshes are already
fairly consistent, we rather consider further speed-up by
view selection and mesh trimming in the future.

Overall, our method avoids the computational bottle-
necks of dense MVS, hence, we believe it is a good alter-
native to do lightweight modeling where there is no need
and/or time to compute an extremely detailed pixelwise 3D
model. In particular, our method makes large-scale ground-
level urban modelling practically feasible, as we can recon-
struct entire street scenes with LoD-3 details from ground-
level images in a matter of minutes.
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