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Abstract

This paper aims to accelerate the test-time computation
of deep convolutional neural networks (CNNs). Unlike ex-
isting methods that are designed for approximating linear
filters or linear responses, our method takes the nonlinear
units into account. We minimize the reconstruction error
of the nonlinear responses, subject to a low-rank constraint
which helps to reduce the complexity of filters. We develop
an effective solution to this constrained nonlinear optimiza-
tion problem. An algorithm is also presented for reducing
the accumulated error when multiple layers are approxi-
mated. A whole-model speedup ratio of 4× is demonstrated
on a large network trained for ImageNet, while the top-5 er-
ror rate is only increased by 0.9%. Our accelerated model
has a comparably fast speed as the “AlexNet” [11], but is
4.7% more accurate.

1. Introduction
This paper addresses efficient test-time computation of

deep convolutional neural networks (CNNs) [12, 11]. Since

the success of CNNs [11] for large-scale image classifica-

tion, the accuracy of the newly developed CNNs [24, 17,

8, 18, 19] has been continuously improving. However, the

computational cost of these networks (especially the more

accurate but larger models) also increases significantly. The

expensive test-time evaluation of the models can make them

impractical in real-world systems. For example, a cloud ser-

vice needs to process thousands of new requests per sec-

onds; portable devices such as phones and tablets mostly

have CPUs or low-end GPUs only; some recognition tasks

like object detection [4, 8, 7] are still time-consuming for

processing a single image even on a high-end GPU. For

these reasons and others, it is of practical importance to ac-

celerate the test-time computation of CNNs.

There have been a few studies on approximating deep

CNNs for accelerating test-time evaluation [22, 3, 10]. A

commonly used assumption is that the convolutional filters

are approximately low-rank along certain dimensions. So
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the original filters can be approximately decomposed into

a series of smaller filters, and the complexity is reduced.

These methods have shown promising speedup ratios on a

single [3] or a few layers [10] with some degradation of

accuracy.

The algorithms and approximations in the previous work

are developed for reconstructing linear filters [3, 10] and

linear responses [10]. However, the nonlinearity like the

Rectified Linear Units (ReLU) [14, 11] is not involved in

their optimization. Ignoring the nonlinearity will impact

the quality of the approximated layers. Let us consider a

case that the filters are approximated by reconstructing the

linear responses. Because the ReLU will follow, the model

accuracy is more sensitive to the reconstruction error of the

positive responses than to that of the negative responses.

Moreover, it is a challenging task of accelerating the

whole network (instead of just one or a very few layers).

The errors will be accumulated if several layers are approx-

imated, especially when the model is deep. Actually, in the

recent work [3, 10] the approximations are applied on a sin-

gle layer of large CNN models, such as those trained on

ImageNet [2, 16]. It is insufficient for practical usage to

speedup one or a few layers, especially for the deeper mod-

els which have been shown very accurate [18, 19, 8].

In this paper, a method for accelerating nonlinear con-

volutional networks is proposed. It is based on minimizing

the reconstruction error of nonlinear responses, subject to a

low-rank constraint that can be used to reduce computation.

To solve the challenging constrained optimization problem,

we decompose it into two feasible subproblems and itera-

tively solve them. We further propose to minimize an asym-

metric reconstruction error, which effectively reduces the

accumulated error of multiple approximated layers.

We evaluate our method on a 7-convolutional-layer

model trained on ImageNet. We investigate the cases of

accelerating each single layer and the whole model. Experi-

ments show that our method is more accurate than the recent

method of Jaderberg et al.’s [10] under the same speedup ra-

tios. A whole-model speedup ratio of 4× is demonstrated,

and its degradation is merely 0.9%. When our model is ac-

celerated to have a comparably fast speed as the “AlexNet”

[11], our accuracy is 4.7% higher.
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2. Approaches
2.1. Low-rank Approximation of Responses

Our observation is that the response at a position of a

convolutional feature map approximately lies on a low-rank

subspace. The low-rank decomposition can reduce the com-

plexity. To find the approximate low-rank subspace, we

minimize the reconstruction error of the responses.

More formally, we consider a convolutional layer with a

filter size of k × k × c, where k is the spatial size of the

filter and c is the number of input channels of this layer. To

compute a response, this filter is applied on a k × k × c

volume of the layer input. We use x ∈ R
k2c+1 to denote a

vector that reshapes this volume (appending one as the last

entry for the bias). A response y ∈ R
d at a position of a

feature map is computed as:

y = Wx. (1)

where W is a d-by-(k2c+1) matrix, and d is the number

of filters. Each row of W denotes the reshaped form of a

k × k × c filter (appending the bias as the last entry). We

will address the nonlinear case later.

If the vector y is on a low-rank subspace, we can write

y = M(y − ȳ) + ȳ, where M is a d-by-d matrix of a rank

d′ < d and ȳ is the mean vector of responses. Expanding

this equation, we can compute a response by:

y = MWx+ b, (2)

where b = ȳ − Mȳ is a new bias. The rank-d′ matrix

M can be decomposed into two d-by-d′ matrices P and Q
such that M = PQ�. We denote W′ = Q�W as a d′-by-

(k2c+1) matrix, which is essentially a new set of d′ filters.

Then we can compute (2) by:

y = PW′x+ b. (3)

The complexity of using Eqn.(3) is O(d′k2c) + O(dd′) ,

while the complexity of using Eqn.(1) is O(dk2c). For

many typical models/layers, we usually have O(dd′) �
O(d′k2c), so the computation in Eqn.(3) will reduce the

complexity to about d′/d.

Fig. 1 illustrates how to use Eqn.(3) in a network. We

replace the original layer (given by W) by two layers (given

by W′ and P). The matrix W′ is actually d′ filters whose

sizes are k × k × c. These filters produce a d′-dimensional

feature map. On this feature map, the d-by-d′ matrix P can

be implemented as d filters whose sizes are 1 × 1 × d′. So

P corresponds to a convolutional layer with a 1×1 spatial

support, which maps the d′-dimensional feature map to a

d-dimensional one. The usage of 1 × 1 spatial filters to

adjust dimensions has been adopted for designing network

architectures [13, 19]. But in those papers, the 1 × 1 filters
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Figure 1. Illustration of the approximation. (a) An original layer

with complexity O(dk2c). (b) An approximated layer with com-

plexity reduced to O(d′k2c) +O(dd′).

are used to reduce dimensions, while in our case they restore

dimensions.

Note that the decomposition of M = PQ� can be arbi-

trary. It does not impact the value of y computed in Eqn.(3).

A simple decomposition is the Singular Vector Decomposi-

tion (SVD) [5]: M = Ud′Sd′Vd′�, where Ud′ and Vd′ are

d-by-d′ column-orthogonal matrices and Sd′ is a d′-by-d′

diagonal matrix. Then we can obtain P = Ud′S
1/2
d′ and

Q = Vd′S
1/2
d′ .

In practice the low-rank assumption is an approximation,

and the computation in Eqn.(3) is approximate. To find an

approximate low-rank subspace, we optimize the following

problem:

min
M

∑

i

‖(yi − ȳ)−M(yi − ȳ)‖22, (4)

s.t. rank(M) ≤ d′.

Here yi is a response sampled from the feature maps in the

training set. This problem can be solved by SVD [5] or ac-

tually Principal Component Analysis (PCA): let Y be the d-

by-n matrix concatenating n responses with the mean sub-

tracted, compute the eigen-decomposition of the covariance

matrix YY� = USU� where U is an orthogonal matrix

and S is diagonal, and M = Ud′Ud′� where Ud′ are the

first d′ eigenvectors. With the matrix M computed, we can

find P = Q = Ud′ .

How good is the low-rank assumption of the responses?

We sample the responses from a CNN model (with 7 con-

volutional layers, detailed in Sec. 3) trained on ImageNet

[2]. For the responses of a convolutional layer (from 3,000

randomly sampled training images), we compute the eigen-

values of their covariance matrix and then plot the sum of

the largest eigenvalues (Fig. 2). We see that substantial en-

ergy is in a small portion of the largest eigenvectors. For

example, in the Conv2 layer (d = 256) the first 128 eigen-

vectors contribute over 99.9% energy; in the Conv7 layer
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Figure 2. PCA accumulative energy of the responses in each layer, presented as the sum of largest d′ eigenvalues (relative to the total

energy when d′ = d). Here the filter number d is 96 for Conv1, 256 for Conv2, and 512 for Conv3-7 (detailed in Table 1).

(d = 512), the first 256 eigenvectors contribute over 95%

energy. This indicates that we can use a fraction of the fil-

ters to precisely approximate the original filters.

The low-rank behavior of the responses y is because

of the low-rank behaviors of the filters W and the inputs

x. While the low-rank assumptions of filters have been

adopted in recent work [3, 10], we further adopt the low-

rank assumptions of the filter input x, which is a local vol-

ume and should have correlations. The responses y will

have lower rank than W and x, so the approximation can be

more precise. In our optimization (4), we directly address

the low-rank subspace of y.

2.2. The Nonlinear Case

Next we investigate the case of using nonlinear units.

We use r(·) to denote the nonlinear operator. In this pa-

per we focus on the Rectified Linear Unit (ReLU) [14]:

r(·) = max(·, 0). A nonlinear response is given by r(Wx)
or simply r(y). We minimize the reconstruction error of the

nonlinear responses:

min
M,b

∑

i

‖r(yi)− r(Myi + b)‖22, (5)

s.t. rank(M) ≤ d′.

Here b is a new bias to be optimized, and r(My + b) =
r(MWx + b) is the nonlinear response computed by the

approximated filters.

The above problem is challenging due to the nonlinearity

and the low-rank constraint. To find a feasible solution, we

relax it as:

min
M,b,{zi}

∑

i

‖r(yi)− r(zi)‖22 + λ‖zi − (Myi + b)‖22

s.t. rank(M) ≤ d′. (6)

Here {zi} is a set of auxiliary variables of the same size as

{yi}. λ is a penalty parameter. If λ → ∞, the solution

to (6) will converge to the solution to (5) [23]. We adopt an

alternating solver, fixing {zi} and solving for M, b and vice

versa.

(i) The subproblem of M, b. In this case, {zi} are fixed. It

is easy to show b = z̄−Mȳ where z̄ is the sample mean of

{zi}. Substituting b into the objective function, we obtain

the problem involving M:

min
M

∑

i

‖(zi − z̄)−M(yi − ȳ)‖22, (7)

s.t. rank(M) ≤ d′.

Let Z be the d-by-n matrix concatenating the vectors of

{zi − z̄}. We rewrite the above problem as:

min
M

‖Z−MY‖2F, (8)

s.t. rank(M) ≤ d′.

Here ‖ · ‖F is the Frobenius norm. This optimization prob-

lem is a Reduced Rank Regression problem [6, 21, 20], and

it can be solved by a kind of Generalized Singular Vector

Decomposition (GSVD) [6, 21, 20]. The solution is as fol-

lows. Let M̂ = ZY�(YY�)−1. The GSVD is applied on M̂
as M̂ = USV�, such that U is a d-by-d orthogonal matrix

satisfying U�U = Id where Id is a d-by-d identity matrix,

and V is a d-by-d matrix satisfying V�YY�V = Id (called

generalized orthogonality). Then the solution M to (8) is

given by M = Ud′Sd′Vd′� where Ud′ and Vd′ are the first

d′ columns of U and V and Sd′ are the largest d′ singular

values. We can further show that if Z = Y (so the problem

in (7) becomes (4)), this solution degrades to computing the

eigen-decomposition of YY�.

(ii) The subproblem of {zi}. In this case, M and b are

fixed. Then in this subproblem each element zij of each

vector zi is independent of any other. So we solve a 1-

dimensional optimization problem as follows:

min
zij

(r(yij)− r(zij))
2 + λ(zij − y′ij)

2, (9)



where y′ij is the j-th entry of Myi + b. We can separately

consider zij ≥ 0 and zij < 0 and remove the ReLU opera-

tor. Then we can derive the solution as follows: let

z
′
ij = min(0, y′ij) (10)

z
′′
ij = max(0,

λ · y′ij + r(yij)

λ+ 1
) (11)

then zij = z
′
ij if z

′
ij gives a smaller value in (9) than z

′′
ij ,

and otherwise zij = z
′′
ij .

Although we focus on the ReLU, our method is appli-

cable for other types of nonlinearities. The subproblem in

(9) is a 1-dimensional nonlinear least squares problem, so

can be solved by gradient descent or simply line search. We

plan to study this issue in the future.

We alternatively solve (i) and (ii). The initialization is

given by the solution to the linear case (4). We warm up the

solver by setting the penalty parameter λ = 0.01 and run

25 iterations. Then we increase the value of λ. In theory, λ
should be gradually increased to infinity [23]. But we find

that it is difficult for the iterative solver to make progress if

λ is too large. So we increase λ to 1, run 25 more iterations,

and use the resulting M as our solution. Then we compute

P and Q by SVD on M.

2.3. Asymmetric Reconstruction for Multi-Layer

To accelerate a whole network, we apply the above

method sequentially on each layer, from the shallow lay-

ers to the deeper ones. If a previous layer is approximated,

its error can be accumulated when the next layer is approx-

imated. We propose an asymmetric reconstruction method

to address this issue.

Let us consider a layer whose input feature map is

not precise due to the approximation of the previous

layer/layers. We denote the approximate input to the cur-

rent layer as x̂. For the training samples, we can still com-

pute its non-approximate responses as y = Wx. So we can

optimize an “asymmetric” version of (5):

min
M,b

∑

i

‖r(Wxi)− r(MWx̂i + b)‖22, (12)

s.t. rank(M) ≤ d′.

Here in the first term xi is the non-approximate input, while

in the second term x̂i is the approximate input due to the

previous layer. We need not use x̂i in the first term, be-

cause r(Wxi) is the real outcome of the original network

and thus is more precise. On the other hand, we do not use

xi in the second term, because r(MWx̂i + b) is the ac-

tual operation of the approximated layer. This asymmetric

version can reduce the accumulative errors when multiple

layers are approximated. The optimization problem in (12)

can be solved using the same algorithm as for (5).
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Figure 3. PCA accumulative energy and the accuracy rates (top-

5). Here the accuracy is evaluated using the linear solution (the

nonlinear solution has a similar trend). Each layer is evaluated

independently, with other layers not approximated. The accuracy

is shown as the difference to no approximation.

2.4. Rank Selection for Whole-Model Acceleration

In the above, the optimization is based on a target d′ of

each layer. d′ is the only parameter that determines the com-

plexity of an accelerated layer. But given a desired speedup

ratio of the whole model, we need to determine the proper

rank d′ used for each layer.

Our strategy is based on an empirical observation that the

PCA energy is related to the classification accuracy after ap-

proximations. To verify this observation, in Fig. 3 we show

the classification accuracy (represented as the difference to

no approximation) vs. the PCA energy. Each point in this

figure is empirically evaluated using a value of d′. 100%

energy means no approximation and thus no degradation of

classification accuracy. Fig. 3 shows that the classification

accuracy is roughly linear on the PCA energy.

To simultaneously determine the rank for each layer, we

further assume that the whole-model classification accuracy

is roughly related to the product of the PCA energy of all

layers. More formally, we consider this objective function:

E =
∏

l

d′
l∑

a=1

σl,a (13)

Here σl,a is the a-th largest eigenvalue of the layer l, and
∑d′

l
a=1 σl,a is the PCA energy of the largest d′l eigenvalues

in the layer l. The product
∏

l is over all layers to be ap-

proximated. The objective E is assumed to be related to

the accuracy of the approximated whole network. Then we

optimize this problem:

max
{d′

l}
E , s.t.

∑

l

d′l
dl
Cl ≤ C. (14)



layer filter size # channels # filters stride output size complexity (%) # of zeros

Conv1 7 × 7 3 96 2 109 × 109 3.8 0.49

Pool1 3 × 3 3 37 × 37

Conv2 5 × 5 96 256 1 35 × 35 17.3 0.62

Pool2 2 × 2 2 18 × 18

Conv3 3 × 3 256 512 1 18 × 18 8.8 0.60

Conv4 3 × 3 512 512 1 18 × 18 17.5 0.69

Conv5 3 × 3 512 512 1 18 × 18 17.5 0.69

Conv6 3 × 3 512 512 1 18 × 18 17.5 0.68

Conv7 3 × 3 512 512 1 18 × 18 17.5 0.95

Table 1. The architecture of the model. Each convolutional layer is followed by ReLU. The final convolutional layer is followed by a spatial

pyramid pooling layer [8] that have 4 levels ({6× 6, 3× 3, 2× 2, 1× 1}, totally 50 bins). The resulting 50× 512-d is fed into the 4096-d

fc layer (fc6), followed by another 4096-d fc layer (fc7) and a 1000-way softmax layer. The convolutional complexity is the theoretical

time complexity, shown as relative numbers to the total convolutional complexity. The (relative) number of zeros is the calculated on the

responses of the layer, which shows the “sparsity” of the layer.

Here dl is the original number of filters in the layer l, and

Cl is the original time complexity of the layer l. So
d′
l

dl
Cl

is the complexity after the approximation. C is the total

complexity after the approximation, which is given by the

desired speedup ratio. This problem means that we want

to maximize the accumulated accuracy subject to the time

complexity constraint.

The problem in (14) is a combinatorial problem [15].

So we adopt a greedy strategy to solve it. We initialize

d′l as dl, and consider the set {σl,a}. In each step we

remove an eigenvalue σl,d′
l

from this set, chosen from a

certain layer l. The relative reduction of the objective is

	E/E = σl,d′/
∑d′

l
a=1 σl,a, and the reduction of complex-

ity is 	C = 1
dl
Cl. Then we define a measure as

�E/E
�C .

The eigenvalue σl,d′
l

that has the smallest value of this mea-

sure is removed. Intuitively, this measure favors a small re-

duction of 	E/E and a large reduction of complexity 	C.

This step is greedily iterated, until the constraint of the total

complexity is achieved.

2.5. Discussion

In our formulation, we focus on reducing the number of

filters (from d to d′). There are algorithmic advantages of

operating on the “d” dimension. Firstly, this dimension can

be easily controlled by the rank constraint rank(M) ≤ d′.
This constraint enables closed-form solutions, e.g., PCA to

the problem (4) or GSVD to the subproblem (7). Secondly,

the optimized low-rank projection M can be exactly de-

composed into low-dimensional filters (P and Q) by SVD.

These simple and close-form solutions can produce good

results using a very small subset of training images (3,000

out of one million).

3. Experiments
We evaluate on the “SPPnet (Overfeat-7)” model [8],

which is one of the state-of-the-art models for ImageNet

Large Scale Visual Recognition Challenge (ILSVRC) 2014

[16]. This model (detailed in Table 1) has a similar archi-

tecture to the Overfeat model [17], but has 7 convolutional

layers. A spatial pyramid pooling layer [8] is used after the

last convolutional layer, which improves the classification

accuracy. We train the model on the 1000-class dataset of

ImageNet 2012 [2, 16], following the details in [8].

We evaluate the “top-5 error” (or simply termed as “er-

ror”) using single-view testing. The view is the center

224 × 224 region cropped from the resized image whose

shorter side is 256. The single-view error rate of the model

is 12.51% on the ImageNet validation set, and the increased

error rates of the approximated models are all based on this

number. For completeness, we report that this model has

11.1% error using 10-view test and 9.3% using 98-view test.

We use this model due to the following reasons. First,

its architecture is similar to many existing models [11, 24,

17, 1] (such as the first/second layers and the cascade us-

age of 3×3 filters), so we believe most observations should

be valid on other models. Second, on the other hand, this

model is deep (7-conv.) and the computation is more uni-

formly distributed among the layers (see “complexity” in

Table 1). A similar behavior exhibits on the compelling

VGG-16/19 models [18]. The uniformly distributed com-

putation indicates that most layers should be accelerated for

an overall speedup.

For the training of the approximations as in (4), (6), and

(12), we randomly sample 3,000 images from the ImageNet

training set and use their responses as the training samples.

3.1. Single-Layer: Linear vs. Nonlinear

In this subsection we evaluate the single-layer perfor-

mance. When evaluating a single approximated layer, the

rest layers are unchanged and not approximated. The

speedup ratio (involving that single layer only) is shown as

the theoretical ratio computed by the complexity.

In Fig. 4 we compare the performance of our linear so-



0 1 2 3
0

1

2

3

4

5

C onv1 S peedup

In
cr

ea
se

 in
 E

rr
or

 (
%

) Linear
Nonlinear

1 2 3 4 5
0

1

2

C onv2 S peedup

Linear
Nonlinear

1 3 5 7
0

1

2

C onv3 S peedup

Linear
Nonlinear

1 3 5 7
0

1

2

3

4

C onv4 S peedup

Linear
Nonlinear

1 3 5 7
0

1

2

3

4

C onv5 S peedup

In
cr

ea
se

 in
 E

rr
or

 (
%

) Linear
Nonlinear

1 3 5 7
0

1

2

3

4

C onv6 S peedup

Linear
Nonlinear

1 3 5 7
0

2

4

6

C onv7 S peedup

Linear
Nonlinear

Figure 4. Linear vs. Nonlinear: single-layer performance of accelerating Conv1 to Conv7. The speedup ratios are computed by the

theoretical complexity, but is nearly the same as the actual speedup ratios in our CPU/GPU implementation. The error rates are top-5

single-view, and shown as the increase of error rates compared with no approximation (smaller is better).

2x 3x 4x
0

0.5

1

1.5

2

2.5

3

S peedup
(b) 3−layer (C onv2, 3 and 4)

0.4

1.2

2.3

0.3

1.0

1.7

2x 3x 4x
0

0.5

1

1.5

2

2.5

3

S peedup
(a) 2−layer (C onv6 and 7)

In
cr

ea
se

 o
f E

rr
or

 (
%

)

0.6

1.5

2.4

0.4

1.2

1.8

2x 3x 4x
0

1

2

3

4

5

S peedup
(c) 3−layer (C onv5, 6 and 7)

0.8

2.2

3.7

0.5

1.5

2.6

S ymmetric
Asymmetric

S ymmetric
Asymmetric

S ymmetric
Asymmetric

Figure 5. Symmetric vs. Asymmetric: the cases of 2-layer and 3-layer approximation. The speedup is computed by the complexity of the

layers approximated. (a) Approximation of Conv6 & 7. (b) Approximation of Conv2, 3 & 4. (c) Approximation of Conv5, 6 & 7.

lution (4) and nonlinear solution (6). The performance is

displayed as increase of error rates (decrease of accuracy)

vs. the speedup ratio of that layer. Fig. 4 shows that the

nonlinear solution consistently performs better than the lin-

ear solution. In Table 1, we show the sparsity (the portion

of zero activations after ReLU) of each layer. A zero acti-

vation is due to the truncation of ReLU. The sparsity is over

60% for Conv2-7, indicating that the ReLU takes effect on a

substantial portion of activations. This explains the discrep-

ancy between the linear and nonlinear solutions. Especially,

the Conv7 layer has a sparsity of 95%, so the advantage of

the nonlinear solution is more obvious.

Fig. 4 also shows that when accelerating only a single

layer by 2×, the increased error rates of our solutions are

rather marginal or ignorable. For the Conv2 layer, the error

rate is increased by < 0.1%; for the Conv3-7 layers, the

error rate is increased by < 0.2%.

We also notice that for Conv1, the degradation is ig-

norable on or below 2× speedup (1.8× corresponds to

d′ = 32). This can be explained by Fig. 2(a): the PCA

energy has almost no loss when d′ ≥ 32. But the degrada-

tion can grow quickly for larger speedup ratios, because in

this layer the channel number c = 3 is small and d′ needs

to be reduced drastically to achieve the speedup ratio. So in

the following, we will use d′ = 32 for Conv1.

3.2. Multi-Layer: Symmetric vs. Asymmetric

Next we evaluate the performance of asymmetric recon-

struction as in the problem (12). We demonstrate approxi-

mating 2 layers or 3 layers. In the case of 2 layers, we show

the results of approximating Conv6 and 7; and in the case

of 3 layers, we show the results of approximating Conv5-7



speedup rank sel. Conv1 Conv2 Conv3 Conv4 Conv5 Conv6 Conv7 err. ↑ %

2× no 32 110 199 219 219 219 219 1.18

2× yes 32 83 182 211 239 237 253 0.93
2.4× no 32 96 174 191 191 191 191 1.77

2.4× yes 32 74 162 187 207 205 219 1.35
3× no 32 77 139 153 153 153 153 2.56

3× yes 32 62 138 149 166 162 167 2.34
4× no 32 57 104 115 115 115 115 4.32

4× yes 32 50 112 114 122 117 119 4.20
5× no 32 46 83 92 92 92 92 6.53

5× yes 32 41 94 93 98 92 90 6.47

Table 2. Whole-model acceleration with/without rank selection. The speedup ratios shown here involve all convolutional layers (Conv1-

Conv7). We fix d′ = 32 in Conv1. In the case of no rank selection, the speedup ratio of each other layer is the same. The solver is the

asymmetric version. Each column of Conv1-7 shows the rank d′ used, which is the number of filters after approximation. The error rates

are top-5 single-view, and shown as the increase of error rates compared with no approximation (smaller is better).

or Conv2-4. The comparisons are consistently observed for

other cases of multi-layer.

We sequentially approximate the layers involved, from

a shallower one to a deeper one. In the asymmetric ver-

sion (12), x̂ is from the output of the previous approxi-

mated layer (if any), and x is from the output of the pre-

vious non-approximate layer. In the symmetric version (5),

the response y = Mx where x is from the output of the

previous non-approximate layer. We have also tried another

symmetric version of y = Mx̂ where x̂ is from the output

of the previous approximated layer (if any), and found this

symmetric version is even worse.

Fig. 5 shows the comparisons between the symmetric

and asymmetric versions. The asymmetric solution has sig-

nificant improvement over the symmetric solution. For ex-

ample, when only 3 layers are approximated simultaneously

(like Fig. 5 (c)), the improvement is over 1.0% when the

speedup is 4×. This indicates that the accumulative error

rate due to multi-layer approximation can be effectively re-

duced by the asymmetric version.

When more and all layers are approximated simultane-

ously (as below), if without the asymmetric solution, the

error rates will increase more drastically.

3.3. Whole-Model: with/without Rank Selection

In Table 2 we show the results of whole-model acceler-

ation. The solver is the asymmetric version. For Conv1,

we fix d′ = 32. For other layers, when the rank selection is

not used, we adopt the same speedup ratio on each layer and

determine its desired rank d′ accordingly. When the rank se-

lection is used, we apply it to select d′ for Conv2-7. Table 2

shows that the rank selection consistently outperforms the

counterpart without rank selection. The advantage of rank

selection is observed in both linear and nonlinear solutions.

In Table 2 we notice that the rank selection often chooses

a higher rank d′ (than the no rank selection) in Conv5-7.

For example, when the speedup is 3×, the rank selection

assigns d′ = 167 to Conv7, while this layer only requires

d′ = 153 to achieve 3× single-layer speedup of itself. This

can be explained by Fig. 2(c). The energy of Conv5-7 is less

concentrated, so these layers require higher ranks to achieve

good approximations.

3.4. Comparisons with Previous Work

We compare with Jaderberg et al.’s method [10], which

is a recent state-of-the-art solution to efficient evaluation.

This method mainly operates on the spatial domain. It de-

composes a k×k spatial support into a cascade of k×1 and

1×k spatial supports. This method focuses on the linear re-

construction error. The SGD solver is adopted for optimiza-

tion. In the paper of [10], their method is only evaluated on

a single layer of a model trained for ImageNet.

Our comparisons are based on our re-implementation of

[10]. We use the Scheme 2 decomposition in [10] and its

filter reconstruction version, which is the one used for Im-

ageNet as in [10]. Our re-implementation of [10] gives a

2× single-layer speedup on Conv2 and < 0.2% increase

of error. As a comparison, in [10] it reports 0.5% increase

of error on Conv2 under a 2× single-layer speedup, eval-

uated on another Overfeat model [17]. For whole-model

speedup, we adopt this method sequentially on Conv2-7 us-

ing the same speedup ratio. We do not apply this method on

Conv1, because this layer has a small fraction of complexity

while the spatial decomposition leads to considerable error

on this layer if using a speedup ratio similar to other layers.

In Fig. 6 we compare our method with Jaderberg et al.’s
[10] for whole-model speedup. The speedup ratios are

the theoretical complexity ratios involving all convolutional

layers. Our method is the asymmetric version and with rank

selection (denoted as “our asymmetric”). Fig. 6 shows that

when the speedup ratios are large (4× and 5×), our method

outperforms Jaderberg et al.’s method significantly. For ex-
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Figure 6. Comparisons with Jaderberg et al.’s spatial decomposi-

tion method [10]. The error rates are top-5 single-view, and shown

as the increase of error rates compared with no approximation

(smaller is better).

ample, when the speedup ratio is 4×, the increased error

rate of our method is 4.2%, while Jaderberg et al.’s is 6.0%.

Jaderberg et al.’s result degrades quickly when the speedup

ratio is getting large, while ours degrades more slowly. This

is indicates the effects of our method for reducing accumu-

lative error. In our CPU implementation, both methods have

similar actual speedup ratio for a given theoretical speedup,

for example, 3.55× actual for 4× theoretical speedup. It is

because the overhead for both methods mainly comes from

fully-connected layers and other layers.

Because our asymmetric solution can effectively reduce

the accumulated error, we can approximate a layer by the

two methods simultaneously, and the asymmetric recon-

struction of the next layer can reduce the error accumulated

by the two methods. As discussed in Sec. 2.5, our method

is based on the channel dimension (d), while Jaderberg et
al.’s method mainly exploits the decomposition of the two

spatial dimensions. These two mechanisms are complemen-

tary, so we conduct the following sequential strategy. The

Conv1 layer is approximated using our model only. Then

for the Conv2 layer, we first apply our method. The approx-

imated layer has d′ filters whose sizes are k×k×c followed

by 1 × 1 filters (as in Fig. 1(b)). Next we apply Jaderberg

et al.’s method to decompose the spatial support into a cas-

cade of k× 1 and 1× k filters (Scheme 2 [10]). This gives a

3-dimensional approximation of Conv2. Then we apply our

method on Conv3. Now the asymmetric solver will take

the responses approximated by the two mechanisms as the

input, while the reconstruction target is still the responses

of the original network. So while Conv2 has been approxi-

mated twice, the asymmetric solver of Conv3 can partially

reduce the accumulated error. This process is sequentially

adopted in the layers that follow.

In Fig. 6 we show the results of this 3-dimensional de-

composition strategy (denoted as “our asymmetric (3d)”).

model
speedup

solution

top-5 err.

(1-view)

top-5 err.

(10-view)

CPU

(ms)

GPU

(ms)

AlexNet [11] - 18.8 16.0 273 2.37

SPPnet, 4×
(Overfeat-7)

[10] 18.5 15.6 278 2.41

our asym. 16.7 14.4 271 2.62

our asym. (3d) 14.1 12.0 267 2.32

Table 3. Comparisons of network performance. The top-5 error is

absolute values (not the increased number). The running time is

per view on a CPU (single thread, with SSE) or a GPU.

We set the speedup ratios of both mechanisms to be equal:

e.g., if the speedup ratio of the whole model is r×, then we

use
√
r× for both. Fig. 6 shows that this strategy leads to

significantly smaller increase of error. For example, when

the speedup is 5×, the error is increased by only 2.5%. This

is because the speedup ratio is accounted by all three dimen-

sions, and the reduction of each dimension is lower. Our

asymmetric solver effectively controls the accumulative er-

ror even if the multiple layers are decomposed extensively.

Finally, we compare the accelerated whole model with

the well-known “AlexNet” [11]. The comparison is based

on our re-implementation of AlexNet. The architecture is

the same as in [11] except that the GPU splitting is ignored.

Besides the standard strategies used in [11], we train this

model using the 224×224 views cropped from resized im-

ages whose shorter edge is 256 [9]. Our re-implementation

of this model has top-5 single-view error rate as 18.8% (10-

view top-5 16.0% and top-1 37.6%). This is better than the

one reported in [11]1.

Table 3 shows the comparisons on the accelerated mod-

els and AlexNet. The error rates in this table are the absolute

value (not the increased number). The time is the actual run-

ning time per view, on a C++ implementation and Intel i7

CPU (2.9GHz). The model accelerated by our asymmetric

solver (channel-only) has 16.7% error, and by our asymmet-

ric solver (3d) has 14.1% error. This means that the accel-

erated model is 4.7% more accurate than AlexNet, while its

speed is nearly the same as AlexNet. As a common practice

[11], we also evaluate the 10-view score of the models. Our

accelerated model achieves 12.0% error, which means only

0.9% increase of error with 4× speedup.

We also evaluate our approximation method on the scene

character classification model released by [10]. Our asym-

metric (3d) solution achieves 4.5× speedup with only a drop

of 0.7% in classification accuracy, which is better than the

1% drop for the same speedup reported by [10].
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