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During the past decades, a lot of effort has been made on combining ac-
tive and semi-supervised learning [3] [2], since they both try to maximize the
utility of the expensive labeled data and exploit the abundant unlabeled data
in real-world problem. However, most of the previous algorithms assume
that queries are drawn from a closed pool and the characteristics of training
and testing samples are the same, which may not be valid when the train-
ing and testing data are collected under different experimental conditions or
characteristics of samples gradually change in a time-lapse sequence of data.
Hence, it is worth to consider how to further incorporate human correction
to achieve better label propagation results.

In order to find out which samples should be examined by human in
order to maximize the return of investment or yield large accuracy improve-
ment as early as possible, we derive a criterion that guides users to actively
select error-prone samples by minimizing the expected prediction error of
unlabeled data using the tool of transductive Rademacher complexity [1],
which is defined as

Definition 1. (Transductive Rademacher Complexity.) For a sample set
D , L∪U = {xn}N

n=1 with N = Nl + Nu, if H is a class of real-valued
function on D, the transductive Rademacher complexity of H is defined by
generalizing the transductive Rademacher complexity to a multi-class ver-
sion as
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where Nc is the number of classes, hi(X) = [hi(x1); · · · ;hi(xN)] is a column
vector of hypothesis functions for the ith class, and σ = [σ1, · · · ,σN ]

T is a
column vector of i.i.d. random variables such that σn is equal to 1 or -1 with
the probability p ∈ [0, 1

2 ] for each, or 0 with the probability 1−2p.

In this paper, we utilize the label propagation function Y∗
u =L−1

uu WulYl ,
ΓuuWulYl as the hypothesis function, and p is set to NlNu

(Nl+Nu)2 . It has been
proved that minimizing the bound of transductive Rademacher complexi-
ty is a proxy for minimizing an expected prediction error [1]. Afterward-
s, we propose a criterion by deriving the upper bound of the transductive
Rademacher complexity for active sample selection as

Theorem 1. (Active sample selection criterion.) The active sample selec-
tion for correction can be implemented as

K∗=argmin
K
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withu ∈ U \K, (2)

where L is the Laplacian matrix, K is a subset of U indicating samples
selected for human examination.

Since the sample selection is an NP-hard problem, we propose a se-
quential minimization algorithm to find an optimal solution of R; given that
k−1 samples are already selected, the subsequent kth sample is selected to
result in the minimum increment of the objective function. Formally, the kth
sample is selected by solving the following problem:
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where
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This is an extended abstract. The full paper is available at the
Computer Vision Foundation webpage.

In the sequential minimization, given Rk−1 and Φk−1, we are searching a
column vector qk (the transpose of the kth row vector in Q) that minimizes
the objective function. Once the kth sample is selected, RT

k Rk and Φk can be
updated by substituting the optimal qk∗ into Eq. (4) and Eq. (4), respectively.

Once a user recognizes some errors when checking the samples recom-
mended by the active sample selection, and corrects them manually, it is
desirable to search for similar errors that can be fixed based on the given
human intervention. Rather than rebuilding a statistical model from scratch
using newly collected training data, we propose a scheme based on augment-
ed graph [4] to handle a batch of samples at each round for more effective
and efficient interaction.

Specifically, label propagation over this augmented graph can be ob-
tained as

Y+
u = Γ+

uu
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][ Yl
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]
, (4)

where Wus is the submatrix indicating the relationship between the virtual
supervisor and the unlabeled samples; Ys is the label matrix of virtual super-
visors; and Γ+

uu denotes inverse of the Laplacian submatrix of the augment-
ed graph corresponding to unlabeled samples. The correction propagation
is summarized as

Theorem 2. (Correction Propagation.) The labels can be updated via the
augmented graph as:

Y+
u = Yu +ΓukΓ−1

kk (Ys −Yk), (5)

where Yu is the current label indicator, which has been updated during the
previous correction propagation; Yk is a submatix of Yu that is constructed
by stacking the rows of Yu which correspond to samples verified by human.
Γkk is a submatrix of the Laplacian matrix related to the human corrected
samples, and Γuk is corresponding to the samples that are affected by the
human corrections.

Hence, human corrections are propagated to the remaining unlabeled
samples in U via ΓukΓ−1

kk , therefore fixing samples undergoing similar er-
rors.

Experimental results on both mismatched and time-evolved real-world
data demonstrate that the human examination of the first 3% of samples
results in approximately 10% accuracy improvement in the very early stage
of human correction. This implies that the samples initially selected have
typical errors, so correction on them can fix a lot of similar cases, thereby
significantly reducing human efforts in refining the results.
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