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Abstract

Graph-based computer vision applications rely critically

on similarity metrics which compute the pairwise similarity

between any pair of vertices on graphs. This paper inves-

tigates the fundamental design of commonly used similar-

ity metrics, and provides new insights to guide their use in

practice. In particular, we introduce a family of similarity

metrics in the form of (L + αΛ)−1, where L is the graph

Laplacian, Λ is a positive diagonal matrix acting as a reg-

ularizer, and α is a positive balancing factor. Such met-

rics respect graph topology when α is small, and reproduce

well-known metrics such as hitting times and the pseudo-

inverse of graph Laplacian with different regularizer Λ.

This paper is the first to analyze the important impact of

selecting Λ in retrieving the local cluster from a seed. We

find that different Λ can lead to surprisingly complementary

behaviors: Λ = D (degree matrix) can reliably extract the

cluster of a query if it is sparser than surrounding clusters,

while Λ = I (identity matrix) is preferred if it is denser

than surrounding clusters. Since in practice there is no re-

liable way to determine the local density in order to select

the right model, we propose a new design of Λ that auto-

matically adapts to the local density. Experiments on image

retrieval verify our theoretical arguments and confirm the

benefit of the proposed metric. We expect the insights of our

theory to provide guidelines for more applications in com-

puter vision and other domains.

1. Introduction

Quite a few computer vision applications have been suc-

cessfully modeled on graphs, including image segmentation

[21, 3, 7, 28, 15], image retrieval [29, 8, 5, 16, 10], mani-

fold learning [24, 14, 27, 2, 22], and face recognition [9]. A

central element in various graph-based applications is the

notion of similarity between vertices. Well-known simi-

larity metrics include personalized PageRank [20], hitting

and commute times [17], and the pseudo-inverse of graph

Laplacian [6]. Despite their popularity, the understanding

of their behaviors is far from complete, and their use in

practice is mostly guided by empirical trials and error anal-

ysis. This paper bridges this gap by investigating the fun-

damental design of commonly used similarity metrics, re-

vealing their hidden assumptions, characterizing their be-

haviors, and solving the model selection problem.

We propose to study a family of graph similarity met-

rics in the form of M = (L+ αΛ)−1, where L is the graph

Laplacian matrix, Λ is a positive diagonal matrix acting as a

regularizer, and α is a positive balancing factor controlling

the degree of regularization. Our motivations are as follows.

First, unlike metrics such as commute times which do not

capture the global graph structure in large random neighbor-

hood graphs [23], M is shown to respect the graph structure

when α is small [25]. Second, as shown in this paper, given

a vertex as query, ranking by M converges to a meaningful

limit when α → 0 (see Sec. 2). In contrast, other metrics

with balancing parameters such as personalized PageRank

[20] and manifold ranking [29] converge to uninformative

results that are solely determined by vertex degrees, mak-

ing it sensitive to select the appropriate balancing parame-

ter. Third, we will show that M unifies several well-known

metrics with different Λ. For example, with Λ = D (degree

matrix), M corresponds to the hitting times and the degree

normalized personalized PageRank [1]; and with Λ = I
(identity matrix), M corresponds to the the pseudo-inverse

of graph Laplacian. This unified view opens the door to

compare and analyze these otherwise irrelevant metrics un-

der a single framework.

One of the main contributions of this paper is to provide

a unified analysis to reveal the important impact of select-

ing the regularizer Λ in retrieving the local cluster from a

seed. We find that different Λ can lead to surprisingly com-

plementary behaviors. Λ = D works amazingly well in

extracting the cluster sparser than its surrounding clusters

but is less preferred than Λ = I the other way around. On

the contrary, Λ = I is particularly desirable if the cluster is

denser than its surrounding clusters but is much worse than

Λ = D otherwise. These findings allow us to select the bet-

ter metric for retrieval if the density of the cluster of interest



(a) Λ = I , AP = 0.14 (b) Λ = D, AP = 0.67 (c) Λ = H , AP = 0.67
Figure 1. The top 40 retrieved images on the extended YaleB dataset (query is on top left). False images are bounded by blue boxes.

(a) Λ = I , AP = 0.27 (b) Λ = D, AP = 0.17 (c) Λ = H , AP = 0.27
Figure 2. The top 40 retrieved images on the CIFAR-10 dataset (query is on top left). Positive images are bounded by magenta boxes.

is known ahead.

However, in practice there is no reliable way to auto-

matically detect the local density in order to select the right

model. Another contribution of this paper is to tackle this

important model selection problem. We propose a new met-

ric (Λ = H , see Sec. 3) which integrates the strengths of the

above two complementary metrics. Λ = H is desirable in

that it behaves like Λ = D when the query lies in a sparse

cluster, while behaves like Λ = I when the query comes

from a dense cluster. The benefit of Λ = H is justified by

our theoretical analysis and experiments on synthetic and

real datasets.

The key message of this paper can be summarized visu-

ally in the image retrieval results in Figs. 1 and 2. In Fig. 1,

the query image comes from the sparsest cluster of total 38

clusters in the extended YaleB dataset [13], while in Fig. 2,

the query image is from the densest cluster of total 10 clus-

ters in the CIFAR-10 dataset [11]. As expected, Λ = D
and Λ = I show distinctive yet complementary behaviors,

while Λ = H automatically biases to the better of the two.

More experiments on image retrieval, including the dataset

description and parameter setup, are reported in Sec. 4.

While we only report experiments on image retrieval,

our theories and results apply to any visual application that

relies on similarity measure and we expect them to guide

more visual applications in the future.

2. The Laplacian-Based Similarity Metrics

Throughout the paper, we consider weighted graphs

which are connected and undirected without self-loops. Let

G = (V,W ) be a graph with a set V of n vertices and a

symmetric non-negative affinity matrix W = [wij ] ∈ R
n×n

(wii = 0). The degree of vertex i is di =
∑

j wij .

D = diag(d1, d2, · · · , dn) is called the degree matrix of the

graph. The graph Laplacian [4] is L = D−W , and the sym-

metric normalized graph Laplacian is Lsym = D− 1

2LD− 1

2 .

Denote by Λ = diag(λ1, · · · , λn) an arbitrary positive di-

agonal matrix.

We consider similarity metrics in the following form:

M = [mij ] ∈ R
n×n = (L+ αΛ)−1, (1)

where Λ is a positive diagonal matrix and α is a positive

balancing factor. Note that while L is degenerate, L + αΛ
is invertible, where Λ acts as a regularizer and α controls

the degree of regularization. As M is derived based on the

graph Laplacian L, we call M the Laplacian-based similar-

ity metric. In this section, we present the desirable prop-

erties of M as graph similarity metrics, and show how it

unifies existing metrics. We also provide examples and in-

tuitions to demonstrate the role of the regularizer Λ in cap-

turing the graph structures. Due to space limit, all proofs in

this paper are included in the supplement.

2.1. Basic Properties

As a similarity matrix M , mij characterizes certain

closeness between vertices i and j. The larger mij is, the

closer i and j are. M is positive and symmetric, i.e., ∀i, j,

mij > 0, and mij = mji. Regardless of Λ, mii is always

the unique largest element in the i-th column and row of

M (see supplement). As shown in Figs. 1 and 2, the query

image is always ranked first regardless of Λ.

The scalar α plays a role of balancing the graph Lapla-

cian L and the regularizer Λ. When α is small, the columns



(a) Two Gaussians (b) Λ = I (c) Λ = D (d) Λ = H

Sparse Dense All

I .5403 .9992 .7698

D .9888 .7888 .8888

H .9720 .9516 .9618

(e) MAP (f) Λ = I (g) Λ = D (h) Λ = H
Figure 3. Two 20-dimensional Gaussians with variances 1 and 0.16, and 400 points in each. The black cross denotes a query. The top 400

ranked points are highlighted in magenta. (d&h) Ranking by our proposed H (Sec. 3). (e) Mean average precision (MAP).

(and thus the rows) of M are smooth on the graph and en-

joy an appealing “harmonic” structure [25] that was shown

to respect the graph topology (we will elaborate on this in

Sec. 3). It is thus interesting to look into M when α is small.

To see how M behaves in such case, below we decompose

it into a ranking matrix plus a constant matrix.

Denote by L̄ = Λ− 1

2LΛ− 1

2 . It is easy to see that L̄ is

symmetric and positive semi-definite, and has the same rank

n− 1 as L (since the graph is connected). Let L̄ = UΓU⊤

be the eigen-decomposition of L̄ with eigenvalues 0 = γ1 <
γ2 ≤ · · · ≤ γn. U = (u1, · · · ,un) is the orthonormal

eigenvector matrix, with u1 = (
√
λ1√∑
i
λi

, · · · ,
√
λn√∑
i
λi

)⊤.

Denote by L̄† the pseudo-inverse of L̄, and denote by 1 the

vector of all ones. We are ready to decompose M .

Theorem 2.1. M = C+E, where C =
1

α
∑

i λi
11

⊤, and

E = Λ− 1

2

(

n
∑

i=2

1

γi + α
uiu

⊤
i

)

Λ− 1

2 .

As mentioned above, the cases with small α are particu-

larly interesting as such metrics can be expected to respect

the graph topology. It is thus intriguing to look into the limit

of the ranking matrix E as α → 0.

Corollary 2.2. lim
α→0

E = Λ− 1

2 L̄†Λ− 1

2 .

By Theorem 2.1, when α is small, M is dominated by C.

However, as C is constant, it has no effect on the ranking

based on M . In other words, ranking by M is completely

determined by E, which, by Corollary 2.2, converges to

the pseudo-inverse of L̄ doubly normalized by Λ− 1

2 . Un-

like personalized PageRank [20] and manifold ranking [29],

which converge to limits solely determined by vertex de-

grees, the limit of E is meaningful by taking into account

the graph structure. This property is desirable since it saves

the trouble of selecting α to avoid biases. In the follow-

ing, we highlight two special designs of Λ which relate to

well-known metrics and are proven to be successful both

theoretically and empirically.

Regularizer I . For Λ = I , we have L̄ = L, and by

Corollary 2.2, limα→0 E = L†, where L† is the pseudo-

inverse of the graph Laplacian. This implies that if α is

sufficiently small, ranking by M is essentially the same

as ranking by the pseudo-inverse of the graph Laplacian,

which is widely used in clustering and recommendation [6]

and proven to respect the graph structure [25].

Regularizer D. For Λ = D, we have L̄ = Lsym, and by

Corollary 2.2, limα→0 E = D− 1

2L†
symD− 1

2 . Let us con-

sider the hitting times hij from every vertex i to hit a given

vertex j. Then ranking by (hij)i=1,...,n is equivalent as

ranking by the j-th column of D− 1

2L†
symD− 1

2 (see supple-

ment). This implies that if α is sufficiently small, ranking

by the j-th column of M is essentially the same as ranking

by the hitting times (hij)i=1,...,n, which is a popular metric

in many fields and shown to be meaningful [25]. Note that

the columns of M = (L+αD)−1 also correspond to the de-

gree normalized personalized PageRank [1], a popular local

clustering method with theoretical guarantees.

2.2. Impact of Regularizer I and D

In this subsection, we explore the role of different regu-

larizer empirically. To this end, we use a synthetic dataset

shown in Fig. 3(a) which consists of two 20-dimensional

Gaussians with different variances. Rankings by I and D
are visualized in Fig. 3(b-c, f-g), and the mean average pre-

cisions (MAP) by taking each vertex as query, are sum-

marized in Fig. 3(e). We can draw several interesting ob-

servations. First, for queries from the dense Gaussian (the



one with smaller variance), I performs much better than D,

while for queries from the sparse Gaussian (the one with

larger variance), D is extremely superior compared to I .

Second, I retrieves the dense Gaussian almost perfectly, but

behaves poorly on the sparse one. Finally, and probably

more surprisingly, D works better on the sparse Gaussian

than on the dense one, which is somewhat counterintuitive

since a denser cluster is supposed to be easier to extract.

Below we offer a probabilistic interpretation for these inter-

esting behaviors, and defer rigorous arguments until Sec. 3.

2.2.1 A Probabilistic Perspective

What are the assumptions behind regularizer I and D? To

understand this, we leverage a model called partially ab-

sorbing random walk (PARW) [26]. PARW is a random

walk that at each step, it gets absorbed at the current state i
with probability pii, or moves to its neighbor j with proba-

bility (1− pii)× wij

di
, where pii =

αλi

αλi+di
. The absorption

probability aij that PARW starts from state i and gets ab-

sorbed at state j within finite steps can be derived in closed

form, A = [aij ] ∈ R
n×n = (L + αΛ)−1αΛ. We can im-

mediately see that for a query j, ranking by the j-th column

of M = (L + Λ)−1 is the same as ranking by the j-th col-

umn of A, i.e., the absorption probabilities of PARW getting

absorbed at state j. We can gain some intuitions using ab-

sorption probabilities.

For Λ = I , pii =
α

α+di
, which is inversely proportional

to the degree of i when α → 0. This means PARW has

much larger mobility in the dense cluster than in the sparse

clusters (the smaller pii, the larger the mobility of PARW

at i). Therefore if the query is in the dense cluster, PARW

from the dense cluster can easily hit the query, but PARW

from the sparse cluster can hardly get to the query as it will

be absorbed in the sparse cluster with high probability. Sim-

ilarly, if the query is in the sparse cluster, the large absorp-

tion will prevent PARW from the same cluster to reach the

query. This explains why I prefers the dense cluster.

For Λ = D, pii = αdi

αdi+di
= α

1+α , which is constant

at each state. This means PARW has the same mobility

within each cluster. However, since the connection within

the sparse cluster is weaker than it is in the dense cluster,

PARW from the sparse cluster can go to the dense cluster

more easily than the other way around. Therefore if the

query is in the sparse cluster, PARW from the dense cluster

will hardly reach it. Similarly, if the query is in the dense

cluster, PARW from the sparse cluster is likely to hit it. This

explains why D prefers the sparse cluster.

3. Analysis

In this section, we aim to quantify the impact of different

regularizer Λ, which allows us to compare different Λ on the

same graph. In particular, our intuitions about Λ = I and

Λ = D will be made precise, and moreover, we propose a

new Λ to combine their strengths.

3.1. Local Divergence

To quantify the impact of a regularizer, we introduce

a notion of divergence to compute its impact on vertex

subsets of the graph. It was shown in [25] that when α
is small, the columns of the absorption probability matrix

A = [aij ] = (L + αΛ)−1αΛ (Sec. 2.2.1), if taken as func-

tions on the underlying graph, enjoy a desirable harmonic

structure which respects the graph topology. Since the j-th

(∀j) column vector of the metric M = (L+ αΛ)−1 is pro-

portional to the j-th column vector of A, it enjoys the same

structure as well.

W.l.o.g., let us take vertex 1 as the query. Denote by

f the first column vector of M and assume the vertices

are sorted such that f1 > f2 ≥ · · · ≥ fn. The har-

monic structure means that the ranking score of a vertex

is approximately the weighted average of its neighbors, i.e.,

fi ≈
∑

j∼i
wij

di
fj , ∀i. Our goal is to characterize the varia-

tion of f with respect to Λ. To achieve this, we use a notion

called “harmonic loss” proposed in [25], which is defined

as:

Lf(S) :=
∑

i∈S,j∈S̄
wij(fi − fj), (2)

where S ⊆ V is a subset of vertices. Lf(S) is referred to

as the harmonic loss of the function f on the subset S . By

the above definition, we can see that Lf(S) is actually the

weighted gap of f between any vertex set S and its com-

plement S̄ . Since in this paper, we only consider Lf on the

local subsets given by Sk := {1, . . . , k}, we call Lf(Sk) the

local divergence1 of f on Sk.

Let λ(S) =
∑

i∈S λi. As shown below in Lemma 3.1,

Lf(Sk) can be represented by absorption probabilities (see

Sec. 2.2.1), and strictly decreases as k increases. More im-

portantly, its limit w.r.t. α only involves the regularizer Λ.

Lemma 3.1. (a) [25] Lf(Sk) =
∑

j∈S̄k
a1j ,

(b) limα→0 Lf(Sk) = λ(S̄k)/λ(V), 1 ≤ k ≤ n.

W.l.o.g., denote by i the first column vector of M with

Λ = I , and assume that i1 > i2 ≥ · · · ≥ in. Denote by d

the first column vector of M with Λ = D, and assume that

d1 > d2 ≥ · · · ≥ dn. Let d(S) =∑i∈S di. The following

corollaries are obtained by applying Λ = I and Λ = D to

Lemma 3.1(b).

Corollary 3.2. limα→0 Li(Sk) = |S̄k|/n.

Corollary 3.3. limα→0 Ld(Sk) = d(S̄k)/d(V).
1The term “divergence” is reminiscent to its counterpart in mathematics

where it measures the magnitude of a vector field’s source or sink at a given

point [18].



1( ) 20xL S = 2( ) 18xL S = 3( ) 16.8xL S =

1 140x = 2 120x = 3 108x = 4 0x =

21 3 4
1 1 0.1

S
3

S
2

S
1

0.05

21 3 4
1 1 0.1

1( ) 20yL S = 2( ) 11yL S = 3( ) 2yL S =

1 40y = 2 20y = 3 10y =
4 0y =

S
3

S
2

S
1

0.05

Figure 4. Functions x and y and their local divergence on a graph of two clusters {1, 2, 3} and {4} (edge weights indicated in pink).

3.2. Divergence Ratio

To understand and compare the impact of different reg-

ularizer Λ in retrieving the local cluster of a query, we de-

velop an evaluation criterion in this subsection. Following

last subsection, assume vertex 1 is the query and the clus-

ter of interest Sc = {1, . . . , c}, and suppose that f ranks Sc

on the top: f1 > f2 ≥ · · · ≥ fc ≥ fc+1 ≥ · · · ≥ fn. To

quantify the robustness of the ranking, it would make sense

to consider the ratio of the gap between Sc and S̄c and the

gap within Sc, as follows:

rf(Sc) :=
fc − fc+1

∑c−1
k=1(fk − fk+1)

=
fc − fc+1

f1 − fc
. (3)

Clearly, the larger the ratio is, the more robust the ranking is.

However, without knowing the actual values of f, it seems

rather difficult, if not impossible, to characterize rf(Sc) on

a general graph.

Recall that the local divergence of f on Sk is defined as

Lf(Sk) =
∑

i∈Sk,j∈S̄k
wij(fi − fj), which is exactly the

weighted gap between Sk and S̄k. This motivates us to char-

acterize f in terms of Lf(Sk). Specifically, we may evaluate

the robustness of f in terms of its divergence ratio:

Rf(Sc) : =
Lf(Sc)

∑c−1
k=1 Lf(Sk)

. (4)

Here, the numerator Lf(Sc) is the weighted gap between the

local cluster Sc and its complement S̄c. For any 1 ≤ k ≤
c − 1, Lf(Sk) breaks down to the weighted gap within Sc

and the weighted gap between Sk and S̄c, where the latter

is part of Lf(Sc) and not necessarily zero. The denomi-

nator is thus the combination of the accumulated weighted

gap within Sc and some weighted gap between Sc and S̄c.

Since the connection between Sc and S̄c is much sparser

than within Sc, the divergence ratio Rf(Sc) is dominated

by the ratio of the weighted gap between Sc and S̄c and the

accumulated weighted gap within Sc, which appears to be

a good surrogate for the gap ratio rf(Sc). The following

statement bounds the divergence ratio.

Theorem 3.4. Rf(Sc) < 1/(c− 1).

Also recall that we are only interested in the cases when

α is small. We thus want to examine the limit of the diver-

gence ratio Rf(Sc), which, by Lemma 3.1(b), can be com-

puted explicitly as follows:

lim
α→0

Rf(Sc) : =
lim
α→0

Lf(Sc)
∑c−1

k=1 lim
α→0

Lf(Sk)
=

λ(S̄c)
∑c−1

k=1 λ(S̄k)
. (5)

Thanks to Eq. (5), we are able to compare the robustness of

different f (with different Λ) on a local cluster Sc numeri-

cally. Before doing so, we use one example to illustrate that

the divergence ratio of a function reflects its gap ratio.

Example. Fig. 4 shows two ranking functions x and y on

a graph with two clusters, along with their local divergence.

Lx(S3) is much larger than Ly(S3), so is x3−x4 to y3−y4.

Similarly, Lx(S1)+Lx(S2) is larger than Ly(S1)+Ly(S2),
so is x1 − x3 to y1 − y3. Overall, Rx(S3) =

16.8
38 is much

larger than Ry(S3) =
2
31 . Correspondingly, rx(S3) =

108
32

is much larger than ry(S3) = 10
30 . Note that if we remove

the edge between vertices 2 and 4, it becomes a chain graph,

and Rf is essentially the same as rf on a chain graph.

For Rf to be large,
Lf(Sc)
Lf(Sk)

should be as large as possible

for every 1 ≤ k ≤ c− 1. This means that for f to be robust

on Sc, its local divergence Lf(Sk) should drop as slowly as

possible on Sk. From Fig. 4, we can see that Lx(S1) =
Ly(S1), but Lx drops much slower than Ly , resulting in a

much more robust ranking function x than y.

3.3. Behaviors of Regularizer I and D

In this subsection, we analyze regularizer I and D and

justify their behaviors observed in Sec. 2.2. By Corollaries

3.2 and 3.3, together with Eq. (5), the limiting divergence

ratios of i (Λ = I) and d (Λ = D) are as follows:

lim
α→0

Ri(Sc) =
|S̄c|

∑c−1
k=1 |S̄k|

, (6)

lim
α→0

Rd(Sc) =
d(S̄c)

∑c−1
k=1 d(S̄k)

. (7)

With Eqs. (6) and (7), the following theorem compares the

robustness of I and D on the same local cluster Sc.



Theorem 3.5. (a) If di = b, ∀i, for some constant b, then

limα→0 Ri(Sc) = limα→0 Rd(Sc).

(b) Suppose for 1 ≤ k < c, d(Sc\Sk)
|Sc\Sk| > d(S̄c)

|S̄c| . Then

limα→0 Ri(Sc) > limα→0 Rd(Sc).

(c) Suppose for 1 ≤ k < c, d(Sc\Sk)
|Sc\Sk| < d(S̄c)

|S̄c| . Then

limα→0 Ri(Sc) < limα→0 Rd(Sc).

Theorem 3.5 explains our first observation about I and

D in Sec. 2.2. When the density of the graph is the same

everywhere, i.e., every vertex in the graph has the same de-

gree, I is essentially the same as D. However, when the

density of the local cluster Sc is larger than its surround-

ing clusters, by Theorem 3.5(b), we have limα→0 Ri(Sc) >

limα→0 Ro(Sc). Note that for 1 ≤ k < c, d(Sc\Sk)
|Sc\Sk| > d(S̄c)

|S̄c|
means that the average degree of vertices within Sc is larger

than that of outside Sc, i.e., Sc is denser than S̄c. Therefore,

if α is sufficiently small, we have Ri(Sc) > Rd(Sc), i.e., i

is more robust than d on Sc. This justifies the observation

that I performs better than D on dense clusters. Similarly,

by Theorem 3.5(c), we prove that D performs better than I
on sparse clusters.

To explain our second observation that I prefers

dense to sparse clusters, simply notice that by Eq. (6)

limα→0 Ri(Sc) is the same regardless the density of Sc,

but extracting a sparse cluster requires much more “robust-

ness” than extracting a dense cluster. In order to interpret

our third observation that D prefers sparse to dense clus-

ters, we characterize in the following lemmas the variation

of limα→0 Rd(Sc) w.r.t. the density of Sc.

Lemma 3.6. lim
d(Sc)/d(S̄c)→0

lim
α→0

Rd(Sc) =
1

c− 1
.

Lemma 3.7. lim
d(Sc)/d(S̄c)→∞

lim
α→0

Rd(Sc) = 0, if d1 <

td(Sc) for a fixed scalar t, 0 < t < 1.

By Lemma 3.6, when the local cluster Sc is extremely

sparse, limα→0 Rd(Sc) reaches its upper bound 1/(c − 1)
(Theorem 3.4). This shows that d is perfectly robust on Sc.

However, by Lemma 3.7, when the local cluster Sc is su-

per dense, limα→0 Rd(Sc) reaches its lower bound 0. This

shows that d is not robust at all on Sc. These results explain

the behavior of D that it prefers sparse to dense clusters.

3.4. The Proposed Regularizer H

We have shown that regularizer I and D behave com-

plementarily, and each has its own strength and weakness.

Ideally, if the query is from a dense cluster, then I should

be used; and if it is from a sparse cluster, then D would be a

better choice. However, in practice, there is no reliable way

to tell whether a query is in a “sparse” or “dense” cluster.

This poses an interesting question: does it exist a regular-

izer that works for both dense and sparse clusters? If so,

what is it? In this subsection, we address this practical issue

by designing a new regularizer Λ which can automatically

switch between the I mode and the D mode.

Our solution is inspired by the observations as follows.

First, since on sparse clusters where the vertices are of rel-

atively low degrees, I tends to fail while D works much

better, it suggests that the “ideal” regularizer (λi’s) for low

degree vertices should be set relatively small (e.g., follow-

ing D). Second, D does not perform well on dense clusters,

which suggests that the regularizer for high degree vertices

should not be set too large. Third, I works well on dense

clusters, implying that a constant regularizer on high degree

vertices may be desired. Combining these arguments, we

propose to take Λ = H = diag(h1, h2, · · · , hn) with

hi = min(d̂, di), i = 1, . . . , n, (8)

where d̂ is the τ -th largest entry in (d1, d2, · · · , dn) (e.g.,

the median), and w.l.o.g., we assume it is unique. One can

see that H is essentially a mix of I and D – it equals to D
at vertices with degree smaller than d̂, and stays constant

otherwise. Let h denote the first column vector of M =
(L+ αH)−1, and w.l.o.g., assume h ranks the local cluster

Sc = {1, . . . , c} on the top (vertex 1 being the query), i.e.,

h1 > h2 ≥ · · · ≥ hc ≥ hc+1 ≥ · · · ≥ hn. We justify this

choice of H below.

3.4.1 Justification

We first show that H behaves like D when the local cluster

Sc is sparse. Assume that maxi∈Sc
di < d̂, and let S ′ =

{i|di < d̂}. By Eq. (5) and the definition of H in Eq. (8),

the limiting divergence ratio of h can be written as follows:

lim
α→0

Rh(Sc) =
d(S ′ \ Sc) + τ d̂

∑c−1
k=1

(

d(S ′ \ Sk) + τ d̂
) . (9)

With Eq. (9) and Eq. (6), we are ready to compare the ro-

bustness of H and I on the same local cluster Sc, as shown

by the following theorem.

Theorem 3.8. Suppose for 1 ≤ k < c, d(Sc\Sk)
|Sc\Sk| <

d(S′\Sc)+τd̂
|S̄c| . Then limα→0 Ri(Sc) < limα→0 Rh(Sc).

By Theorem 3.8, if the density of the local cluster Sc

is sparse to an extent, H is more robust than I . In-

deed, by Lemma 3.9 below, when Sc is extremely sparse,

limα→0 Rh(Sc) reaches its upper bound, which is exactly

like D. This proves that by setting hi = di for low degree

vertices, H behaves very similarly as D on sparse clusters.

Lemma 3.9. lim
maxi∈Sc di/d̂→0

lim
α→0

Rh(Sc) =
1

c− 1
.



We next show that H behaves like I when the local

cluster Sc is dense. Assume mini∈Sc
di > d̂, and let

S∗ = {i|di > d̂}. By Eq. (5) and the definition of H in

Eq. (8), the limiting divergence ratio of h is as follows:

lim
α→0

Rh(Sc) =
|S∗ \ Sc|d̂+ d(S̄∗)

∑c−1
k=1

(

|S∗ \ Sk|d̂+ d(S̄∗)
) . (10)

By Eq. (10) and Eq. (7), we can compare the robustness

of H and D on the same local cluster Sc, as stated in the

following theorem.

Theorem 3.10. Suppose for 1 ≤ k < c, d(Sc\Sk)
|Sc\Sk| >

d(S̄c)

|S∗\Sc|+d(S̄∗)/d̂
. Then limα→0 Rh(Sc) > limα→0 Rd(Sc).

By Theorem 3.10, if the density of the local cluster Sc

is dense to an extent, H is more robust than D. In fact, by

Eq. (10), we can see that limα→0 Rh(Sc) does not depend

on the density within Sc, which is exactly like I . This shows

that by setting λi = d̂ for high degree vertices, H behaves

much like I on dense clusters.

Remark on d̂: The performance of H depends on the

choice of d̂, and d̂ should not be set too large or too small.

If d̂ is too large, H behaves much like D and there is no

sufficient regularization for dense data. On the other hand,

if d̂ is too small, H behaves much like I and cannot do

well on sparse data. By our empirical studies, we find that

d̂ = median(d1, d2, · · · , dn) works quite well in practice.

We adopt this setting throughout our experiments.

The superiority of H can be immediately seen on the

Two Gaussians example in Fig. 3, where H demonstrates

a nice balance between I and D. On the dense Gaussian,

H is very close to I and much better than D; while on the

sparse Gaussian, it is very close to D and much better than

I . Overall, H performs superior than either I or D. More

evaluations on real datasets are reported in the next section.

4. Experimental Results
In this section, we compare regularizer I , D, and H for

image retrieval on three large benchmark datasets: USPS,

MNIST, and CIFAR-10.

Parameter Setup. We construct a weighted 20-NN

graph for each dataset, including the Two Gaussians in

Fig. 3. The edge weight between vertices i and j is set as

wij = exp(−d2ij/σ) if i is within j’s 20 nearest neighbors

or vice versa, otherwise wij = 0, where dij is the Euclidean

distance between vertices i and j. We set σ = 0.2×s with s
being the average square distance among each vertex to its

20-th nearest neighbor. For I , D, and H , we use the same

α and set it to a very small number α = 1e− 6, to approx-

imate the limiting case considered in this paper. For each

dataset, we compute the mean average precision (MAP) on

each class and on the entire dataset (the average of the MAP

on all classes).

USPS Dataset. USPS2 contains 9298 images of hand-

written digits from 0 to 9 of size 16× 16, with 1553, 1269,

929, 824, 852, 716, 834, 792, 708, and 821 in each class.

We use each instance as query on the entire dataset.

MNIST Dataset. MNIST3 [12] contains 70,000 images

of handwritten digits from 0 to 9 of size 28×28, with 6903,

7877, 6990, 7141, 6824, 6313, 6876, 7293, 6825 and 6958

in each class. It consists of a training set of 60,000 examples

and a test set of 10,000 examples. We use each instance in

the test set as query (and all 70,000 images as the database).

CIFAR-10 Dataset. CIFAR-104 consists of 60,000 tiny

color images of size 32x32 in 10 mutually exclusive classes,

with 6,000 in each class. There are 50,000 training images

and 10,000 test images. Each image is represented by a

512-dimensional GIST feature vector [19]. We use each

test image as query (and all 60,000 images as the database).

The results are shown in Table 1, where d̂ denotes the

median degree in each class and on the entire graph. For

each class, we highlight the results when H is biased to the

significantly better regularizer. We can draw several obser-

vations. First, by d̂, we can see that it is common that real

image clusters are of varied density. Some classes can be

highly dense because images of that class have more sim-

ilar features, e.g., digit “1” in USPS and MNIST, “plane”

and “ship” in CIFAR; while some can be rather sparse due

to less similar features, e.g., digit “2” in USPS and MNIST,

“dog” and “cat” in CIFAR. Second, I and D show distinc-

tive yet complementary behaviors. For example, I is much

better than D on dense classes, e.g., “plane” and “ship” in

CIFAR, and digits “1” and “7” in MNIST. In contrast, D
performs much better than I on sparse classes, e.g., dig-

its “2”, “4”, and “5” in USPS, and “auto”, “cat”, “dog”,

“horse”, and “truck” in CIFAR. Third, our proposed H
successfully adapts to the data density and combines the

strengths of I and D (as highlighted), thus achieving the

best overall retrieval results (last column in Table 1) on

all the three datasets. We also include the results of per-

sonalized PageRank (PR) [20] and manifold ranking (MR)

[29] for comparison, using the parameters suggested in their

original papers. H is significantly better than both methods

on almost every cluster of each dataset.

To see how H performs w.r.t. d̂, we test H with different

d̂ on the entire USPS dataset, using each image from the

densest cluster (digit “1”) and the sparsest cluster (digit “2”)

as query, respectively. The results are shown in Fig. 5. We

run through H with τ = ⌊n × k⌋, where k = [0 : 0.05 : 1]

(let τ = 1 when k = 0). Note that when τ = 1, d̂ is equal

to the largest vertex degree, and H is essentially the same

as D; and when τ = n, d̂ is equal to the smallest vertex

degree, and H is essentially the same as I . In Fig. 5, H

2http://www-stat.stanford.edu/ tibs/ElemStatLearn/
3http://yann.lecun.com/exdb/mnist/
4http://www.cs.toronto.edu/ kriz/cifar.html



Table 1. Mean average precision on the USPS, MNIST, and CIFAR datasets.

0 1 2 3 4 5 6 7 8 9 All

USPS d̂ 0.76 18.66 0.04 0.13 0.27 0.05 0.83 1.68 0.17 1.70 0.47

I .9805 .9882 .8760 .8926 .6462 .7781 .9401 .9194 .7460 .7296 .8497

D .9819 .9751 .9057 .8926 .6816 .7972 .9231 .9153 .7450 .6959 .8514

H .9797 .9871 .9101 .8961 .6819 .7971 .9408 .9167 .7679 .7231 .8601

PR .8860 .9720 .6080 .7639 .4879 .5684 .8374 .8253 .6255 .7022 .7277

MR .9570 .9871 .8272 .8273 .4671 .6303 .9167 .8225 .6750 .7191 .7829

MNIST d̂ 0.30 11.18 0.07 0.15 0.36 0.15 0.49 1.06 0.11 0.79 0.32

I .9877 .9759 .9269 .8867 .7916 .8004 .9745 .8848 .8118 .6602 .8700

D .9881 .9249 .9324 .8744 .8102 .8097 .9706 .8502 .8161 .6573 .8634

H .9868 .9746 .9397 .8831 .8002 .8070 .9742 .8832 .8341 .6613 .8744

PR .8867 .7444 .6574 .7006 .5941 .5750 .8303 .6916 .5874 .5916 .6859

MR .9803 .9436 .8897 .8166 .6355 .7152 .9546 .7883 .7140 .6463 .8084

CIFAR plane auto bird cat deer dog frog horse ship truck All

d̂ 0.65 0.15 0.33 0.13 0.36 0.15 0.27 0.16 0.51 0.16 0.23

I .2999 .2760 .1570 .1320 .1703 .1848 .2949 .2243 .3195 .2493 .2308

D .2387 .3049 .1454 .1562 .1581 .2141 .2901 .2488 .2835 .2741 .2314

H .2917 .2945 .1552 .1496 .1621 .2054 .2891 .2342 .3128 .2609 .2356

PR .2335 .2050 .1418 .1007 .2136 .1403 .2612 .1571 .2655 .1701 .1889

MR .2296 .1513 .1286 .0821 .1715 .1022 .1924 .1201 .2321 .1124 .1522
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Figure 5. Sensitivity of H w.r.t. d̂ on the USPS dataset. (a) Queries

from the densest cluster. (b) Queries from the sparsest cluster.

with median degree (k = 0.5) is highlighted in red. We

can immediately see that I (k = 1) and D (k = 0) show

opposite performances on the two clusters. On digit “1”

(dense), H with k ≥ 0.5 is close to I (k = 1), while on

digit “2” (sparse), H with k ≤ 0.5 is close to D (k = 0),

indicating that k = 0.5 achieves a nice balance between I
and D. We can also observe that variations of H are slow

around k = 0.5 on both clusters, which shows that H is

stable if d̂ is not far away from the median degree.

To test the stability of H when α is small, we run through

H with α = 10−m, where m = [1 : 1 : 8], on the entire

USPS dataset. Again, we use each image from the densest

cluster (digit 1) and the sparsest cluster (digit 2) as query,

respectively. It can be seen that on either cluster, MAP of

1 2 3 4 5 6 7 8
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Figure 6. Stability of H w.r.t. α on the USPS dataset. (a) Queries

from the densest cluster. (b) Queries from the sparsest cluster.

H increases when α decreases and becomes stable quickly,

which confirms our analysis in Sec. 2.

5. Conclusion

The contributions of this paper can be summarized

as follows. By investigating the fundamental design of

Laplacian-based similarity metrics, we provide new insights

into widely used metrics including hitting times and the

pseudo-inverse of graph Laplacian. We establish rigorous

analysis to justify our findings. We also propose a new met-

ric to solve the model selection problem, which has been

successfully applied in image retrieval. We expect more

graph-based visual applications to benefit from this work.
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