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Abstract

This paper addresses two issues hindering the advances
in accurate image alignment. First, the performance of
descriptor-based approaches to image alignment relies on
the chosen descriptor, but the optimal descriptor typically
varies from image to image, or even pixel to pixel. Sec-
ond, the neighborhood structure for smoothness enforce-
ment is usually predefined before alignment. However, ob-
ject boundaries are often better discovered during align-
ment. The proposed approach tackles the two issues by
adaptive descriptor selection and dynamic neighborhood
construction. Specifically, we associate each pixel to be
aligned with an affine transformation, and integrate the
learning of the pixel-specific transformations into image
alignment. The transformations serve as the common do-
main for descriptor fusion, since the local consensus of each
descriptor can be estimated by accessing the corresponding
affine transformation. It allows us to pick the most plausi-
ble descriptor for aligning each pixel. On the other hand,
more object-aware neighborhoods can be produced by ref-
erencing the consistency between the learned affine trans-
Jformations of neighboring pixels. The promising results on
popular image alignment benchmarks manifests the effec-
tiveness of our approach.

1. Introduction

Image alignment aims to densely identify pixel corre-
spondences across images. It is an active and fundamen-
tal topic in computer vision, because it is essential to a
broad set of applications, such as scene parsing [23], com-
mon object discovery [30], image denoising [3], image en-
hancement [12] and depth estimation [17]. The major chal-
lenge that image alignment techniques must face is the large
photometric and geometric variations between images to be
aligned. Such unfavorable variations significantly degrade
the performance of conventional optical flow approaches in
producing the correspondence field for image alignment.

To address this problem, SIFT flow [24], a pioneering
descriptor-based method for image alignment, adopts the
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model of optical flow, and generates the flow field by match-
ing the SIFT features [25] instead of raw pixel features. De-
spite the effectiveness, there are still two main limitations in
most descriptor-based methods. First, existing descriptors
are designed with the trade-off between distinctiveness and
invariance. The effectiveness of a descriptor for alignment
crucially depends on the types and the degrees of variations
between the images to be aligned. In other words, differ-
ent features could work better for different variations. Most
descriptor-based methods adopt a specific descriptor, and
does not take this issue into account. Second, the neighbor-
hood used to enforce the smoothness of the flow field are
often predefined by using the four-neighbor rule, the bilat-
eral filter [35], and so on. The constructed neighborhood
carries only the intra-image information, and neglects the
object-background configuration, which can be better rev-
eled during the process of alignment.

To address the two limitations, we present an ap-
proach that leverages multiple complementary descriptors
and matching-guided neighborhoods, and can produce flow
maps of high quality. Specifically, we associate each pixel
with a learnable affine matrix, which specifies the flow field
within that pixel’s neighborhood. On the one hand, the
affine matrix serves as a common domain for descriptor
fusion, because the local consensus of a descriptor can be
measured by the gap between the flows estimated by the
affine matrix and that descriptor. It allows us to pick the
most plausible descriptor in a pixel-specific manner. On the
other hand, motivated by the observation that correct cor-
respondences within the same object often undergo coher-
ent transformations, we then determine the neighborhood
of a pixel by measuring its consistency with its neighbors in
terms of affine matrices. The yielded neighborhood is more
object-aware, and hence facilitates image alignment.

As an illustration, Figure 1 shows the alignment results
on two cases, face and Leuven, by using SIFT flow,
its variants (replacing the SIFT descriptor with the GB de-
scriptor [5] and the LIOP descriptor [38], respectively), and
our approach. The strong coherence in shape presents in
the case of face, so the shape-based descriptor, geometric
blur, gives good results. For the case of Leuven, better
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Figure 1. Image alignment on two image pairs, face and Leuven. (a) & (b) Images to be aligned. (c) ~ (f) Alignment results using
different approaches, including (c) SIFT flow, (d) the variant of SIFT flow by replacing the descriptor with GB [5], (e) the variant of SIFT
flow by replacing the descriptor with LIOP [38], and (f) our approach. On the top of each result, we show its score (intersection-over-union
for face and the correct ratio for Leuven). Note that, for Leuven, only correct matches are shown.

performance is achieved by using LIOP descriptor owing to
its robustness to the change of lighting conditions. Our ap-
proach can make the most of multiple descriptors with the
matching-guided neighborhoods, and results in visually and
quantitatively better flow fields in both cases.

In this paper, we integrate the learning of the pixel-
specific affine matrix and object-aware neighborhood into
the process of image alignment, and cast them as a joint
optimization problem. Through the iterative optimization,
the object-aware neighborhoods are gradually revealed by
the learned affine matrices, while the alignment results
would be progressively improved owing to the better neigh-
borhoods. Our approach is comprehensively evaluated
on four benchmarks of image alignment, including VGG
dataset [28], MSRC dataset [30, 32], Caltech dataset [18]
and LMO dataset [18, 23] for different tasks. The re-
sults show that our approach effectively produces object-
aware neighborhoods and selects a proper descriptor for
each pixel, thus leading to a remarkable performance boost.

2. Related work

We review previous work relevant to the development of
our approach by categories in this section.

Local feature descriptors. The design of local feature
descriptors [28] has gained significant progress. Various de-
scriptors have been developed to be robust to noises as well
as invariant to variations in image correspondence. For ex-
ample, SIFT (scale-invariant feature transform) [25] char-
acterizes image regions in the gradient domain, and is in-
variant to scale and orientation changes. LIOP (local in-
tensity order pattern) [38] encodes ordinal information, and
is robust to the changes of lighting conditions. DAISY [34]
is featured with fast feature extraction, while keeping in-
variant to viewpoint changes. GB (geometric blur) [5]

matches shapes with deformation by using spatially vary-
ing kernels. In addition, diverse visual cues have been ex-
plored in descriptor construction, such as color characteris-
tics [1, 37], shapes [4], self-similarities [10, 31], and local
symmetries [14]. These descriptors are designed with the
trade-off between distinctiveness and invariance. Thus, the
optimal descriptor for alignment varies from pixel to pixel.
Our approach addresses this issue by taking multiple com-
plementary descriptors into account.

Dense image correspondence. In contrast to sparse
matching [8, 9, 14], methods of this class aim to identify
the matched regions between pairs of images in a dense
manner. The major challenges are the large photometric
and geometric variations between images. To address this
issue, SIFT flow [24] adopts the computational model of
optical flow, but discovers the correspondences by match-
ing the SIFT features instead of raw features. HaCohen et
al. [12] proposed to fit a color model and aggregate con-
sistent matching regions with locally adaptive constraints.
Kim et al. [18] developed the deformable spatial pyramid
model which further improves SIFT flow in both efficiency
and accuracy. Barnes et al. [2] proposed a fast but approx-
imate method, PatchMatch, for finding the nearest patches
across images. It was further generalized to search patches
with various scales and rotation angles [3]. Yang et al. [41]
presented DAISY filter flow, which combines the DAISY
descriptor [34], filter-based flow inference [16], and Patch-
Match [2], to efficiently estimate the correspondence field
with significant variations. To be more robust to scales,
Hassner et al. [13] used a set of SIFTs with multiple scales,
and Kokkinos and Yuille [20] adopted multiple scale filters
in construing features. These two methods are robust to the
scales, but less robust to other intra-object variations. All
these methods adopt a single descriptor. They may have
sub-optimal performance, when the adopted descriptor can-
not handle the variations between the image pair.

1922



Feature fusion. Since different descriptors characterize
diverse visual cues, using multiple descriptors has been
a feasible way for improving the correspondence perfor-
mance. Research results [7, 33, 39] have shown that in-
tegrating sparse feature matching into dense image corre-
spondence yields better performance, especially when large
displacement presents. Fixed weights are used to merge the
evidences extracted on sparsely detected interest points and
densely sampled points in these methods, neglecting the fact
the optimal features are often image-dependent. Concern-
ing this issue, adaptive feature fusion has been implemented
in recent studies [19, 21, 40]. Lempitsky er al. [21] pro-
posed FusionFlow, which compiles the flow map by adap-
tively fusing multiple flow proposals obtained by different
flow estimation methods with various parameter settings.
Xu et al. [40] presented a selective model, in which the
color and gradient constraints are adaptively combined to
deal with outliers. Kim ez al. [19] developed a locally vary-
ing data term, in which multiple types of data models are
merged to best reduce local ambiguity. However, features
extracted by diverse descriptors or models are usually of
different dimensions and with different scales of statistics.
Thus, fusion by directly combining the respective features
or comparing distances may be difficult. We overcome this
issue by using the pixel-specific affine matrices as the com-
mon domain for descriptor fusion. The local consistency
across heterogeneous descriptors can be measured by their
compatibility with the corresponding affine matrix. This
property allows us to select an appropriate descriptor for
aligning each pixel.

Neighborhood construction. The smoothness term im-
plements spatial regularization, and plays a key role in
dense image correspondence. It is usually computed based
on the neighborhoods of pixels. There exist a number
of approaches for neighborhood construction, such as the
four- or eight-connected rule, Gaussian filter [29], bilat-
eral filter [35], guided filter [16]. In contrast to the local
approaches [16, 29, 35], Yang [42] proposed a non-local
method for cost aggregation in matching, and showed its
robustness in textureless regions. In addition, research ef-
fort [15, 26, 43] has been made on the construction of adap-
tive supports. However, the foregoing methods compile
the neighborhoods by accessing the single image, and suf-
fer from the inter-object ambiguity and intra-object varia-
tions. The generated neighborhoods may be inconsistent
with the true object boundaries. Our approach instead in-
tegrates neighborhood construction into image alignment.
More object-aware neighborhoods are produced by lever-
aging the object-background configuration revealed during
image alignment. Trulls er al. [36] added the object-aware
information into the feature descriptors for image align-
ment. Lin er al. [22] integrated the bilateral functions into
sparse matching to enforce the global flow coherence and

handle noisy cases. Unlike aforementioned approaches,
ours dynamically estimates local neighborhoods by refer-
ring to flow fields during alignment.

3. The proposed approach

We introduce the problem definition, the formulation, the
optimization process and implementation details of our ap-
proach in this section.

3.1. Problem definition

We aim to align two given images I; and I, by finding a
plausible flow map W = {w;} ¥, where w; = [u; v; 0]"
is the flow vector at the ith pixel, p; = [z; v; 1]T, and
N is the number of pixels in I;. Multiple descriptors are
applied to better characterize each pixel in I; and I5. A
set of flow map proposals can then be generated by using
any descriptor-based algorithm for image alignment, such
as [3, 18, 24, 41]. We in this work use SIFT flow [24] for its
stable and good performance. Suppose M descriptors are
used. The generated flow proposals would be {W™}M_, |
where W™ = {w} ¥ | is the flow map produced by using
SIFT flow with the substituted descriptor m. Our method
yields the flow map W by referencing only the flow pro-
posals {W™}M_. = Thus, it can conveniently work with
heterogeneous descriptors without worrying about their di-
versities. Specifically, every pixel ¢ can choose its flow
vector from one of the proposals, i.e., w; < Wfi, where
¢; € {1,2,...,M}. Hence, it is formulated as a labelling
problem by optimizing L = {¢;}}¥_, for producing the flow
map W = {w,} Y.

As mentioned previously, we associate each pixel ¢ with
a learnable affine matrix A; € R3*3, which specifies the
flow within the neighborhood of that pixel. Let A; denote
the index set of the spatial neighbors of pixel . A weight
vector e; = [e;;]j € N;| is maintained to define the neigh-
borhood of pixel ¢. To sum up, our approach aligns images
I, and I, by optimizing three variable sets: L = {¢;} ¥,
A={A}Y, and E = {e,} Y.

3.2. Alignment objective

We incorporate the learning process of the pixel-specific
affine matrix and neighborhood into image alignment, and
cast it as the following constrained optimization problem:

N
Join, ; J(l, Aiye;) (1)

st. e =0,e/1=1,fori=1,2,..,N, (2
where 1 is a column vector whose elements are one. The

constraints in Eq. (2) ensure the non-negative and normal-
ized neighborhood for each pixel i. J(e;, A;,¢;) is the en-
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ergy function regarding pixel ¢, and is defined below:

Tl As ) =P — Aipill” + Y essllp) — Aipy|1?

JEN;
tay (e —si)?+B Y eylli #4], ()
JEN; JEN;

where «, (3, and ~y are three non-negative constants. Their
values are fixed for images in each used benchmark in the
experiments. p; is the corresponding point of p;, i.e., p; =
pi +Ww,". 5;; is anormalized similarity between A; and A;,
and its value is set as

exp(—dgeo(mi, mj)/0)
> jen; eXp(=dgeo(mi,my) /o)

Sij “4)
The precise definition of s;; will be given later.

Three optimization variables present in the objective
function pertaining to pixel ¢, including its proposal selec-
tor ¢;, affine matrix A;, and neighborhood weight vector e;.
Four terms in Eq. (3) are employed to enforce the compati-
bility among the three variables. Specifically, the first term
measures the inconsistence between ¢; and A;, the third
term measures that between A; and e;, while the fourth term
measures that between £; and e;. The second term evaluates
the joint inconsistence among the three variables. The jus-
tification for the four terms is given as follows.

The first term ||p} — A;p;||? in Eq. (3) reveals the con-
sensus between proposal selector ¢; and affine matrix A;.
While the former gives the correspondence of pixel ¢ by
p; =pi + wf"', the latter specifies the local flow field cen-
tered on pixel i, e.g., A;p; at pixel ¢. The smaller the first
term, the more consistent the two variables are.

The second term 3~ . €i; [P} — Aip; > in Eq. (3) can
be regarded as a generalization of the first term. It considers
the compatibility between affine matrix A; and proposal se-
lectors {£; } jcn;, within the ith pixel’s neighborhood, which
is parametrized by e;.

The third term 3=, v (€55 — i )2 in Eq. (3) evaluates the
consistency between the neighborhood and the affine trans-
formation of pixel ¢. The design of this term is inspired by
the observation that nearby pixels within the same object
tend to undergo similar transformations in correspondence.
We leverage this property to derive object-aware neighbor-
hood. Specifically, e;; indicates the contribution of pixel j
to the neighborhood of pixel 7. On the other hand, s;; mea-
sures the normalized similarity between affine matrices A;
and A;. In Eq. (4), m; = (pi, A;pi, 4;) is the specified
correspondence of pixel ¢ by A;, and m; is similarly de-
fined. We adopt the reprojection error [9], dgeo, to measure
the distance between two affine matrices. o is set as the av-
erage distance from A; to {A; }je ;. The reprojection error
is defined as

1
dgeo(mia mj) = §(dgeo(mi|mj) + dgeo(mj|mi))a @)

where
1 _
dgeo(mi|m;) = §(||Aipz' — Ajpill + llpi — Aj P Aipil), (6)

and dgeo(m;|m;) is symmetrically defined. It can be ob-
served that s; = [s;;|j € N;] is a distribution. Thus, opti-
mizing this term leads to the coherence between s; and e;.

The lastterm > . €5[¢; # £;] in Eq. (3) preserves the
consistence between the proposal selectors of neighboring
pixels. Based on the fact that the characteristics of pixels are
spatially correlative, the optimal descriptors for feature ex-
traction tend to be consistent along the spatial domain. This
energy function encourages the spatial smoothness of the
adopted descriptors, since each flow proposal corresponds
to a specific descriptor in this work.

It is worth pointing out that our formulation in Eq. (1)
can collaborate with multiple heterogeneous descriptors
without accessing their respective feature vectors and dis-
tances. This property prevents our approach from suffer-
ing from the diversities among these descriptors, such as
dimensions, statistics scales, similarity measures. It also
distinguishes this work from previous approaches relevant
to descriptor fusion, such as [19, 21, 40].

3.3. Optimization procedure

Since direct optimization to Eq. (1) is difficult, we in-
stead adopt an iterative, alternating strategy to optimize L,
A, and E. At each iteration, one of the three variables is op-
timized while keeping the others fixed, and then their roles
are switched sequentially. Iterations are repeated until con-
vergence or a maximum number of iterations is reached.
On optimizing L. While fixing A and F, the optimization
problem in Eq. (1) is reduced to

N
. £; 2 L; 2
mLmz; (WHPi +wi— Api|® + EA:/ eijllp; +w; — Aipj|
i= JEN;

+8 ) et # fj]) @)
JEN;
With optimization variables L = {¢; € {1,2,.... M}} N,
Eq. (7) is a labeling problem. We efficiently solve it by
using graph cut [6].

On optimizing A. By fixing L and F, the optimization
problem in Eq. (1) becomes

N
min ; V(4;), where (8)

V(A;) = Z eij [P — AipslI” +7llp; — Aipil®>. (9)
JEN;

There is no dependence between A; and A; for ¢ # j in
Eq. (8). This property greatly reduces the optimization time,
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Figure 2. Comparison of three different weighting schemes. (a)
Gaussian weight. (b) Bilateral weight. (c) The proposed method.

since the optimal A; can be independently obtained by solv-
ing V(4;) in Eq. 9). V(4;) is a weighted least square
problem, which is convex and has a closed-form solution.
By setting the derivative of V' (A4;) with respect to A; to
zero, the optimal A; is obtained by

A = ( Z eijp;'PjT)( Z eijpjp;'r)_ly (10)

JEN;T jen;t

where N, = N; Uiand e;; = 7.

On optimizing £. With the fixed L and A, we also find
the independence between e; and e; for ¢ # j in optimiza-
tion. Each e; can then be independently solved. Specifi-
cally, the reduced optimization problem with respect to e;
is given below

n;i_n alle; — s> + eiTri
st. e;=0,e/1=1, (11)
where s; = [s;;]7 € Ni] T,
r; = [|p) — Aips|12 + Bl # 4]l € N T

The constrained optimization problem in Eq. (11) is a con-
vex quadratic programming problem. We efficiently solve
it by using package CVXGEN [27].

3.4. Implementation details

In this work, four descriptors are adopted, including
SIFT [25], GB [5], DAISY [34] and LIOP [38], and total
four flow proposals are generated by SIFT flow and its vari-
ants. We set the radius of the neighborhood of each pixel
as 10 pixels. The maximal number of iterations 7' is set
as 30 in the experiments, though our approach converges
within 10 iterations in most cases. In the alternating opti-
mization, initializing two of the three sets of the optimiza-
tion variables is required. We choose neighborhood weights
E = {e;} and proposal selectors L = {¢;} in this work.
Each neighborhood weight vector e; is initialized by us-
ing Gaussian filter. For proposal selector ¢;, we compute
the descriptor dissimilarity between pixel ¢ and its nearest

Algorithm 1 Optimization Procedure

Input: Flow candidates, {W™}M_, ; Max iteration, T’
Initialize £ and L;
fori <« 1,2,....,T do
A <+ {A}}, where A} is optimized via Eq. (10);
Update {s;;} in Eq. (4);
E + {e}}, where e is optimized via Eq. (11);
L < L*, where L* is optimized via Eq. (7);
end for
Refine labels L via Eq. (12);
Output: Flow field, W = {w;} where w; « Wfi;

neighbor in the other image, and the dissimilarity between
pixel ¢ and the mapped pixel under each descriptor m and
the corresponding flow proposal W™. We set ¢; as that with
the largest dissimilarity ratio.

In the proposed method, the object-aware neighborhoods
are gradually revealed through the iterative procedure. The
image alignment result is accordingly improved owing to
the high-quality neighborhoods. Figure 2 gives an example
for comparing the proposed method to Gaussian and bilat-
eral weights. For the pixel whose weights shown in the first
row of the figure, it is a background pixel near the boundary
of the object and the background. Gaussian weight cannot
get it right since it is isotropic and content-independent. For
the background pixel at the second row, it is on a flat area
and all weighting schemes work well. For the third row,
the pixel is on the object but near appearance discontinu-
ity. Bilateral weight fails because it solely relies on appear-
ance. Finally, the pixel at the last row locates on a junc-
tion of three regions: bright object, dark object and dark
background. Gaussian cannot distinguish the object and the
background well while bilateral weight classifies the dark
object and the dark background together because of similar
appearance. The proposed scheme properly weights these
parts through the iterative process.

Optimizing Eq. (1) for all pixels is computationally very
expensive. Hence, we apply our approach to an evenly sam-
pled grid with grid lines spaced every 5 pixels. We obtain

an intermediate flow map W ={w;} ¥, and the full weight
matrix E using bicubic interpolation on flows and weights

of the sampled grid. The final flow map is obtained by solv-
ing the following labelling problem:

N
min > Hiwii—wil?+ 3 &y (o (6201 +6 1w —w, |17 |
i JEN;

(12)

in which the data term encourages the flow resemble the

intermediate flow while the smoothness term measures in-

consistency of labels and flows for neighboring pixels. o
and 3 are two non-negative constants.

Algorithm 1 summarizes the optimization procedure.

The whole algorithm is implemented in MATLAB on a mod-
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Table 1. Quantitative comparisons of the proposed method with
competing methods. Ours + G./B. denotes the proposed method
with a fixed weight map using Gaussian/Bilateral weights.

. Dataset
Method - Descriptor G557 VISRC Caltech LMO
SIFT 4502 4199 4608 68.86
GB 4271 3833 5066 67.80
SF[24]  DAISY 4497 4122 4668 68.78
LIOP 4776 3487 4192 6624
Con. 4947 4220 4877 63.29
Ave. 4118 4190 4948 7027
FE[21] 4776 4040 4779 69.03
SIFT 4399 3258 3741 5744
GB 4195 3141 3837 5749
GPM[3]  DAISY 4844 3792 3956 61.05
LIOP 4222 2515 2944 5241
Con. 5042 3830 4147 61.96
Ave. 39.86 3204 3434 5677

FF[21] 4222 3402 3715 59.73
DFF [41] DAISY (R+S) 51.09 4037 5095 69.93

Ours + G. All 53.70 44.67 5272 71.07
Ours + B. All 53.64 4455 53.13 71.02
Ours All 54.31 46.22 54.87 72.42

ern PC with Intel Core i7 3.4GHz CPU. The running time
for an image of size 256 x 256 is about 15 seconds for iter-
ative optimization and less than 1 seconds for the final flow
refinement. In addition, the pre-processing steps for gener-
ating each feature map and proposal take around 2 and 12
seconds, respectively. Figure 3 plots the convergence of the
method and it usually convergences in few steps, around 10
steps in the figure.

4. Experiments

This section describes the datasets and metrics for evalu-
ation, the competing methods and the experimental results.

4.1. Datasets and metrics

We use existing datasets and metrics to evaluate the
proposed method on several image alignment tasks. Four
datasets are used: VGG dataset [28], MSRC dataset [30,
32], Caltech dataset [18] and LMO dataset [18, 23]. These
datasets can be categorized into three groups by tasks.

Dense correspondence. In this task, we find dense pixel
correspondences between two images. For this task, we use
VGG dataset. It has eight image sets, each of which con-

(a) (b)
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Figure 3. (a) Correct ratio and (b) Energy along with the number
of iterations for the VGG dataset. They show that the convergence
is fast and steady.

tains images with five different degrees of a specific varia-
tion. There are five types of variations: viewpoint changes,
scale changes, image blur, JPEG compression, illumina-
tion changes. The dataset provides ground truth correspon-
dences for evaluation. For evaluation of the task, we use the
ratio of correct matches, which fall within 7" pixels from the
ground truth correspondences in location. We set T as 0.005
of the image dimension, corresponding to roughly 3 ~ 5
pixels for these images.

Object matching. The task locates the foreground objects
of some object classes. Caltech and MSRC are two popular
datasets for the task with large intra-class variations. With
a similar setting to previous work [18], we selected 20 and
14 object classes from Caltech and MSRC respectively. For
each class, we randomly pick 10 pairs of images and use im-
age alignment to transfer foreground labels from one image
to the other. The intersection over union (IoU) metric [11]
is used to evaluate the results as it allows us to isolate the
matching quality of the foreground objects from the irrele-
vant backgrounds [18].

Scene matching. While the object matching task is
only concerned with foreground/background segmentation,
scene matching task annotates each pixel with one of mul-
tiple class labels. LabelMe Outdoor (LMO) dataset with 33
class labels is used for the task. We use a similar setting to
Kim et al. [18] by randomly splitting the test and exemplar
images in half (1, 344 images each). For each test image, we
first find its closest exemplar image in GIST space. Then,
we use image alignment to find pixel matching and transfer
labels from the selected exemplar to the test image accord-
ingly. Accuracy is used as the metric for the task. While
measuring accuracy, we only consider the matchable pixels
that belong to the classes common to both images.

4.2. Competing methods

We categorize the competing methods into two group:
single-feature methods and feature-fusion methods. We
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Figure 4. Example image alignment results using the proposed method and SIFT-flow variants with four different feature descriptors.

The first one example is from MSRC; the next one from Caltech and the last one from LMO. On the top of each result, we show its
numerical score (IoU for MSRC/Caltech and accuracy for LMO). It is clear that features perform quite differently for different examples.
By integrating features, the proposed method outperforms any individual one. The last column visualizes the features selected by the
proposed method across these images (red for SIFT, green for GB, blue for DAISY and magenta for LIOP).

compare the proposed method to three state-of-the-art im-
age alignment methods: SIFT flow (SF) [24], Generalized
PatchMatch (GPM) [3], and DAISY filter flow (DFF) [41].
SF and GPM are single-feature methods. DFF can be
regarded as a feature-fusion method because it compares
DAISY features across different scales and orientations. For
each single-feature methods (SF and GPM), we have four
variants with four different features, SIFT, DAISY, GB and
LIOP. It gives us a total of 8 single-feature methods. We
have also extended SF and GPM to utilize multiple features
in three different ways: concatenated feature (Con.), aver-
age flow (Avg.) and FusionFlow (FF) [21]. For Con., the
four types of features are concatenated as a single feature.
It is then fed into a single-feature method for obtaining the
flow map. For Avg., we average the four flow maps obtained
from four variants of a single-feature method. Finally, given
the four flow maps from different features as candidates,
FusionFlow [21] fuses them into a single one by computing
minimum cuts. This way, we have 6 feature-fusion methods
derived from SF and GPM. Therefore, there are a total of 15
competing methods.

4.3. Results

Table 1 summarizes the mean scores of the proposed
method and all competing methods. The numeric scores
in the table represent the correct ratios, the IoU scores
and the accuracy scores for the task of dense correspon-
dence (VGG), object matching (MSRC/Caltech) and scene

matching (LMO), respectively. For single-feature meth-
ods, we can observe that there is no single best feature for
all datasets. By leveraging strengths of different features,
the proposed method outperforms all single-feature meth-
ods by a margin. Interestingly, although with the advantage
of having more features, feature-fusion methods do not al-
ways outperform single-feature ones. It shows that fusion
of features is not a trivial process. Comparing features in
the feature domains could lead to bias so that some features
are more dominant. The proposed method compares fea-
ture more fairly in a common domain and outperforms all
competing methods as shown in Table 1.

We also compare different weighting schemes. We re-
place the object-aware weights in the proposed method with
Gaussian weights and bilateral weights, denoted as Ours+G.
and Ours+B. in Table 1. The experiment shows that the
object-aware neighborhoods does improve the performance.

Figure 4 presents a visual comparison of the proposed
method with several SIFT-flow variants with different fea-
tures (SIFT, GB, DAISY and LIOP) on image alignment.
These examples are from MSRC (the first row), Caltech
(the next one) and LMO (the last one). On the top of each
result, we show its numerical score (IoU for the first two
examples and accuracy for the last one). The last column
of Figure 4 visualizes the selected features by the proposed
method across images. The red, green, blue and magenta
colors denote the SIFT, GB, DAISY and LIOP features re-
spectively.
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Image 1 Image 2

SF-FF DFF Ours Selected features

Figure 5. Example image alignment results using the proposed method and some feature fusion methods. The first one is from MSRC,
and the second and third examples come from Caltech and LMO, respectively. On the top of each result, we show its numerical score (IoU
for MSRC/Caltech and accuracy for LMO). The proposed method outperforms all of them, showing that the proposed scheme for feature
and neighborhood selection is more effective. The last column visualizes the features selected by the proposed method across these images

(red for SIFT, green for GB, blue for DAISY and magenta for LIOP).

It is evident from the figure that these features are com-
plementary and there is no single feature suitable for all vi-
sual variations. For example, in the example of the first row,
the trees exhibit view variations in two images. DAISY is
known for viewpoint invariance and thus it performs better
than other features individually. For the cups in the second
row, the geometric shape is more distinctive and the shape-
based descriptor, GB, performs the best. The example in
the last row has multiple classes and each has its own spe-
cific feature. Thus, three features, SIFT, GB and DAISY,
have similar performance. Our method can leverage the
strengths of individual features by feature selection. It se-
lects the DAISY feature for more parts of the tree in the first
example, the GB feature for most parts around the silhou-
ette of the cup in the second example.

Figure 5 shows several image alignment results with the
proposed method and several feature fusion methods, SIFT-
flow with concatenated features, average flow, FusionFlow
and DAISY filter flow on several challenging examples in-
cluding multi-objects (the first row), dramatic color differ-
ence (the second row) and textureless regions (the third
row). The proposed method outperforms other methods
quantitatively and visually in most examples by leveraging
multiple features..

Limitations: Our approach acts as an extra layer to fuse
multiple flow proposals. It will fail in the cases where none
of them is good enough. However, the proposed formula-
tion for proposal fusion is general in the sense that it makes

no assumption about how these proposals are yielded. Thus,
the aforementioned issue could be alleviated by using com-
plementary proposals with different combinations of de-
scriptors and image alignment algorithms, such as SIFT-
flow [23], DSP [18], PatchMatch [2, 3] or DFF [41].

5. Conclusions

We have introduced an image alignment method with
the capability of pixel-specific feature selection and neigh-
borhood construction. The affine matrix learned within a
local neighborhood is adopted as a common domain for
feature selection. At the same time, a matching-guided
object-aware neighborhood is estimated through the esti-
mated affine matrix and flows. By improving the neigh-
borhood, we have a better estimate of the affine matrix. On
the other hand, a more accurate affine matrix leads to bet-
ter neighborhood construction. Experiments show that the
proposed method outperforms the state-of-the-art methods.
In the future, we would like to overcome the limitations and
integrate sparse matching into our method. In addition, it
would also be interesting to investigate how the proposed
idea can be extended to other domains such as scene pars-
ing and image classification.
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