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Salient object detection methods can be categorized as bottom-up stimuli-

driven [2, 6] and top-down task-driven [4, 8] approaches. In this paper, we

propose a novel algorithm via bootstrap learning [5] in which both weak

and strong models are exploited. To address the problems of noisy detection

results and limited representations from bottom-up methods, we present a

learning approach to exploit multiple features. However, unlike existing top-

down learning-based methods, the proposed algorithm is bootstrapped with

samples from a bottom-up model, thereby alleviating the time-consuming

off-line training process or labeling positive samples manually. Figure 1

shows the main steps of the proposed salient object detection algorithm.

First, we construct a weak saliency model by exploiting the contrast

between each region and the regions along the image border based on three

descriptors including the RGB, CIELab and Local Binary Pattern (LBP)

features. In addition, the center-bias and dark channel priors are further

exploited to better estimate saliency maps. An input image is segmented

into N superpixels, {ci}, i = 1, . . . ,N. The regions along the image border

are represented as {n j}, j = 1, . . . ,NB. The coarse saliency value for the

region ci is constructed by

f0(ci) = g(ci)×Sd(ci)× ∑
κ∈{F1,F2,F3}

(

1

NB

NB

∑
j=1

dκ (ci,n j)

)

, (1)

where dκ (ci,n j) is the Euclidean distance between region ci and n j in the

feature space that κ represents, i.e., the RGB (F1), CIELab (F2) and LBP

(F3) texture features respectively. In addition, Sd(ci) and g(ci) denote the

dark channel prior and center prior for the region ci. We use a simple yet

effective algorithm based on the Graph Cut method [1], to construct the

continuous and smoothed weak saliency map, from which the training set

for the strong classifier is selected.

Then, we present a method similar to the Multiple Kernel Boosting

(MKB) [7] method to include multiple kernels of different features. We

treat SVMs with different kernels as weak classifiers and then learn a strong

classifier using the boosting method. Note that we restrict the learning pro-

cess to each input image to avoid the heavy computational load of extracting

features and learning kernels for a large amount of training data (as required

in several discriminative methods [4] in the literature for saliency detection).

For each image, we have the training samples {ri, li}
H
i=1, where ri is the

i-th sample, li represents the binary label of the sample and H indicates the

number of the samples. In this paper we use the boosting algorithm instead

of the simple combination of single-kernel SVMs in the MKL method:

Y (r) =
J

∑
j=1

β jz j(r). (2)

In order to compute the parameters β j, we use the Adaboost method and the

parameter J in (2) denotes the number of iterations of the boosting process.

We consider each SVM as a weak classifier and the final strong classifier

Y (r) is the weighted combination of all the weak classifiers. Starting with

uniform weights, ω1(i) = 1/H, i = 1,2, . . . ,H, for the SVM classifiers, we

obtain a set of decision functions {zm(r)},m = 1,2, . . . ,M. At the j-th iter-

ation, we compute the classification error for each of the weak classifiers,

εm =
∑

H
i=1 ω(i)|zm(ri)|(sgn(−lizm(ri))+1)/2

∑
H
i=1 ω(i)|zm(ri)|

, (3)

where sgn(x) is the sign function. We locate the decision function z j(r)
with the minimum error ε j, i.e., ε j = min1≤m≤M εm. Then the combination

coefficient β j is computed by β j =
1
2 log

1−ε j

ε j
· 1

2 (sgn(log
1−ε j

ε j
)+ 1). Note

that β j must be larger than 0, indicating ε j < 0.5, which accords with the

basic hypothesis that the boosting method could make the weak classifiers
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Figure 1: Bootstrap learning for salient object detection.

into a strong one. In addition, we update the weight using the following

equation,

ω j+1(i) =
ω j(i)e

−β j liz j(ri)

2
√

ε j(ε j −1)
. (4)

After J iterations, all the β j and z j(r) are computed and we have a boosted

classifier (2) as the saliency model learned directly from an input image. We

apply this strong saliency model to the test samples (based on all the super-

pixels of an input image), and a pixel-wise saliency map is thus generated.

To improve the accuracy of the map, we first use the Graph Cut method

to smooth the saliency detection results. Next, we obtain the strong saliency

map by further enhancing the saliency map with the guided filter [3] as it

has been shown to perform well as an edge-preserving smoothing operator.

The accuracy of the saliency map is sensitive to the number of superpix-

els as salient objects are likely to appear at different scales. To deal with the

scale problem, we generate four layers of superpixels with different granu-

larities.

The weak map is likely to detect fine details and to capture local struc-

tural information due to the contrast-based measure. In contrast, the strong

map works well by focusing on global shapes for most images except the

case when the test background samples have similarity with the positive

training set or large differences compared to the negative training set, or

vice versa for the test foreground sample. Thus we integrate the weak and

strong maps by a weighted combination to incorporate the complementary

properties of these two maps.

Extensive experiments on six benchmark datasets demonstrate that the

proposed bootstrap learning algorithm performs favorably against the state-

of-the-art saliency detection methods. Furthermore, we show that the pro-

posed bootstrap learning approach can be easily applied to other bottom-up

saliency models for significant improvement.
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