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Abstract

We propose a bootstrap learning algorithm for salient

object detection in which both weak and strong models are

exploited. First, a weak saliency map is constructed based

on image priors to generate training samples for a strong

model. Second, a strong classifier based on samples direct-

ly from an input image is learned to detect salient pixels.

Results from multiscale saliency maps are integrated to fur-

ther improve the detection performance. Extensive experi-

ments on six benchmark datasets demonstrate that the pro-

posed bootstrap learning algorithm performs favorably a-

gainst the state-of-the-art saliency detection methods. Fur-

thermore, we show that the proposed bootstrap learning ap-

proach can be easily applied to other bottom-up saliency

models for significant improvement.

1. Introduction

As an important preprocessing step in computer vision

problems to reduce computational complexity, saliency de-

tection has attracted much attention in recent years. Al-

though significant progress has been made, it remains a

challenging task to develop effective and efficient algo-

rithms for salient object detection.

Saliency models include two main research areas: vi-

sual attention which is extensively studied in neuroscience

and cognitive modeling, and salient object detection which

is of great interest in computer vision. Salient object de-

tection methods can be categorized as bottom-up stimuli-

driven [1, 8–12, 15–18, 20, 23, 28–38, 41, 43] and top-down

task-driven [19, 40, 42] approaches. Bottom-up methods

are usually based on low-level visual information and are

more effective in detecting fine details rather than global

shape information. In contrast, top-down saliency model-

s are able to detect objects of certain sizes and categories

based on more representative features from training sam-

ples. However, the detection results from top-down meth-

ods tend to be coarse with fewer details. In terms of com-

putational complexity, bottom-up methods are often more

efficient than top-down approaches.

In this paper, we propose a novel algorithm for salien-

Figure 1. Saliency maps generated by the proposed method.

Brighter pixels indicate higher saliency values. Left to right: in-

put, ground truth, weak saliency map, strong saliency map, and

final saliency map.

t object detection via bootstrap learning [22]. To address

the problems of noisy detection results and limited repre-

sentations from bottom-up methods, we present a learning

approach to exploit multiple features. However, unlike ex-

isting top-down learning-based methods, the proposed algo-

rithm is bootstrapped with samples from a bottom-up mod-

el, thereby alleviating the time-consuming off-line training

process or labeling positive samples manually.

2. Related Work and Problem Context

Both weak and strong learning models are exploited in

the proposed bootstrap learning algorithm. First, we com-

pute a weak contrast-based saliency map based on super-

pixels of an input image. This coarse saliency map is s-

moothed by a graph cut method, where a set of training

samples is collected, where positive samples are pertaining

to the salient objects while negative samples are from the

background in this image. Next, a strong classifier based on

Multiple Kernel Boosting (MKB) [39] is learned to measure

saliency where three feature descriptors (RGB, CIELab col-

or pixels, and the Local Binary Pattern histograms) are ex-

tracted and four kernels (linear, polynomial, RBF, and sig-

moid functions) are used to exploit rich feature representa-

tions. Furthermore, we use multiscale superpixels to detect

salient objects of varying sizes. As the weak saliency mod-

el tends to detect fine details and the strong saliency model

focuses on global shapes, these two are combined to gener-

ate the final saliency map. Experiments on six benchmark



Figure 2. Bootstrap learning for salient object detection. A weak saliency map is constructed based on image priors to generate training

samples for a strong model. A strong classifier based on multiple kernel boosting is learned to measure saliency where three feature

descriptors are extracted and four kernels are used to exploit rich feature representations. Detection results at multiple scales are integrated.

The weak and strong saliency maps are weighted combined to generate the final saliency map.

datasets show that the proposed bootstrap learning algorith-

m performs favorably against the state-of-the-art saliency

detection methods. In addition, we incorporate the pro-

posed bootstrap learning algorithm with existing bottom-up

saliency methods, and achieve significant improvement in

salient object detection. Figure 1 shows some saliency map-

s generated by the proposed method where brighter pixels

indicate higher saliency values.

Numerous bottom-up saliency detection methods have

been proposed in recent years. Itti et al. [16] propose a

saliency model based on a neural network that integrates

three feature channels over multiple scales for rapid scene

analysis. While it is able to identify salient pixels, the

results contain a significant amount of false detections.

A graph-based saliency measure is proposed by Harel et

al. [12]. However, this method focuses on eye fixation pre-

diction and generates a low resolution saliency map similar

to [16]. Saliency models based on Bayesian inference have

been proposed in [29, 35, 36]. In [18], the low-level salien-

cy stimuli and the shape prior are integrated using an iter-

ative energy minimization measure. In [28], Perrazzi et al.

present a contrast-based saliency filter and measure saliency

by the uniqueness and spatial distribution of regions over an

image. While the above-mentioned contrast-based methods

are simple and effective, pixels within the salient objects are

not always highlighted well. Shen and Wu [30] construct

a unified model combining lower-level features and higher-

level priors for saliency detection based on the theory of low

rank matrix recovery. In [34], Wei et al. focus on the back-

ground instead of the foreground and build a saliency detec-

tion model based on two background priors, i.e., boundary

and connectivity. Cheng et al. [10] utilize a soft abstraction

method to remove unnecessary image details and produce

perceptually accurate salient regions. In [37], Yan et al.

formulate a multiscale method using a tree model to deal

with the scale problem. A graph-based bottom-up method

is proposed using manifold ranking [38]. Recently, Zhu et

al. [43] construct a salient object detection method based on

boundary connectivity.

Compared to bottom-up approaches, considerable effort-

s have been made on top-down saliency models. In [42],

Zhang et al. construct a Bayesian-based top-down model

by integrating both the top-down and bottom-up informa-

tion where saliency is computed locally. A saliency mod-

el based on the Conditional Random Field is formulated

with latent variables and a discriminative dictionary in [40].

Jiang et al. [19] propose a learning-based method by re-

garding saliency detection as a regression problem where

the saliency detection model is constructed based on the in-

tegration of numerous descriptors extracted from training

samples with ground truth labels.

As these two categories bring forth different properties

of efficient and effective salient detection algorithms, we

propose a bootstrap learning approach which exploits the

strength of both bottom-up contrast-based saliency models

and top-down learning methods.

3. Bootstrap Saliency Model

Figure 2 shows the main steps of the proposed salient ob-

ject detection algorithm. We first construct a weak salien-

cy map from which the training samples are collected. For

each image, we learn a strong classifier based on superpix-

els. To deal with the scale problem, multiscale detection re-

sults are generated and merged to construct a strong salien-

cy map. The final saliency map is the weighted integration

of the weak and strong maps for accurate detection results.



3.1. Image Features

Superpixels have been used extensively in vision tasks

as the basic units to capture the local structural information.

In this paper, we compute a fixed number of superpixels

from an input image using the Simple Linear Iterative Clus-

tering (SLIC) method [2]. Three descriptors including the

RGB, CIELab and Local Binary Pattern (LBP) features are

used to describe each superpixel. The rationale to use two

different color representations is based on empirical results

where better detection performance is achieved when both

are used, which can be found in the supplementary docu-

ment. We consider the LBP features in a 3 × 3 neighbor-

hood of each pixel. Next, each pixel is assigned to a value

between 0 and 58 in the uniform pattern [27]. We construct

an LBP histogram for each superpixel, i.e., a vector of 59
dimensions ({hi}, i = 1, 2, ...59, where hi is the value of

the i-th bin in an LBP histogram).

3.2. Weak Saliency Model

The center-bias prior has been shown to be effective in

salient object detection [5, 25]. Based on this assumption,

we develop a method to construct a weak saliency model by

exploiting the contrast between each region and the region-

s along the image border. However, existing contrast-based

methods usually generate noisy results since low-level visu-

al cues are limited. In this paper, we exploit the center-bias

and dark channel priors to better estimate saliency maps.

The dark channel prior is proposed for the image haze

removal task [14]. The main observation is that, for regions

that do not cover the sky (e.g., ground or buildings), there

exist some pixels with low intensity values in one of the

RGB color channels. Thus, the minimum pixel intensity in

any such region is low. The dark channel of image patches

is mainly generated by colored or dark objects and shadows,

which usually appear in the salient regions as shown in Fig-

ure 3. The sky region of an image usually belongs to the

background, which is just consistent with the dark channel

property for the sky region. Therefore, we exploit the dark

channel property to estimate saliency of pixels. In addition,

for situations where the input image has dark background

or bright foreground, we use an adaptive weight computed

based on the average value on the edge of dark channel map.

In the proposed method, we define the dark channel pri-

or of an image on the pixel level. For a pixel p, the dark

channel prior Sd(p) is computed by

Sd(p) = 1− min
q∈patch(p)

(

min
ch∈{r,g,b}

(

Ich(q)
)

)

, (1)

where patch(p) is the 5 × 5 image patch centered at p and

Ich(q) is the color value of pixel q on the corresponding

color channel ch. Note that all the color values are normal-

ized into [0, 1]. We achieve pixel-level accuracy instead of

Figure 3. Examples of dark channel prior. Left to right: input, dark

channel map and dark channel prior (the opposite of dark channel

map and brighter pixels indicate higher saliency values).

the patch-level counterpart in [14]. We also show the effect

of dark channel prior quantitatively in Figure 7(b).

An input image is segmented into N superpixels,

{ci}, i = 1, . . . , N . The regions along the image border

are represented as {nj}, j = 1, . . . , NB , where NB is the

number of regions along the image border. We compute

the dark channel prior for each region ci using Sd(ci) =
1

Nci

∑

p∈ci
Sd(p), where Nci is the number of pixels within

the region ci. The coarse saliency value for the region ci is

constructed by

f0(ci) = g(ci)×Sd(ci)×
∑

κ∈{F1,F2,F3}





1

NB

NB
∑

j=1

dκ(ci, nj)



,

(2)

where dκ(ci, nj) is the Euclidean distance between region

ci and nj in the feature space that κ represents, i.e., the

RGB (F1), CIELab (F2) and LBP (F3) texture features re-

spectively. Note that all the distance values in each feature

space are normalized into [0, 1]. In addition, g(ci) is com-

puted based on the center prior using the normalized spatial

distance between the center of the superpixel ci and the im-

age center [18]. Thus the saliency value of the region closer

to the image center is assigned a higher weight. We generate

a pixel-wise saliency map M0 using (2), where the saliency

value of each superpixel is assigned to the contained pixels.

Most existing methods usually use Gaussian filtering to

generate smoothed saliency maps at the expense of accura-

cy. In this paper, we use a simple yet effective algorithm

based on the Graph Cut method [7, 21], to determine the

foreground and background regions in M0. Given an input

image, we construct an undirected graph G = (V,E, T ),
where E is a set of undirected edges that connect the nodes

V (pixels) while T is the set of the weights of nodes con-

nected to the background and foreground terminals. The

weight of each node (pixel) p connected to the foreground

terminal is assigned with the saliency value in the pixel-

wise map M0. Thus for each pixel p, the set T consists of

two components, defined as {T f (p)} and {T b(p)}, and is

computed by

T f (p) = M0(p), T b(p) = 1−M0(p), (3)



Figure 4. Performance of Graph Cut. Left to right: input, saliency

maps without Graph Cut, binary results using Graph Cut, saliency

maps after summing up the previous two maps.

where T f (p) is the weight of pixel p connected to the fore-

ground while T b(p) is the weight to the background. The

minimum cost cut generates a foreground mask M1 using

the Max-Flow [6] method to measure the probability of each

pixel being foreground.

As shown in Figure 4, M1 is a binary map which may

contain noise in both foreground and background. Thus we

consider both the binary map M1 and the map M0 to con-

struct the continuous and smoothed weak saliency map M̌w

by

M̌w =
M0 +M1

2
. (4)

We show the performance of the Graph Cut method quanti-

tatively in Figure 7(b). The training set for the strong clas-

sifier is selected from the weak saliency map. We com-

pute the average saliency value for each superpixel and set

two thresholds to generate the training set containing both

positive and negative samples. The superpixels with salien-

cy values larger than the high threshold are labeled as the

positive samples with +1 while those with saliency values

smaller than the low threshold as the negative samples la-

beled with −1. More details about the threshold setting can

be found in the supplementary document.

3.3. Strong Saliency Model

One of the main difficulties using a Support Vector Ma-

chine (SVM) is to determine the appropriate kernel for the

given dataset. This problem is more complicated when the

dataset contains thousands of diverse images with differen-

t properties. While numerous saliency detection methods

based on various features have been proposed, it is still not

clear how these features can be well integrated. To cope

with these problems, we present a method similar to the

Multiple Kernel Boosting (MKB) [39] method to include

multiple kernels of different features. We treat SVMs with

different kernels as weak classifiers and then learn a strong

classifier using the boosting method. Note that we restrict

the learning process to each input image to avoid the heavy

computational load of extracting features and learning ker-

nels for a large amount of training data (as required in sever-

al discriminative methods [19] in the literature for saliency

detection).

The MKB algorithm is a boosted Multiple Kernel Learn-

ing (MKL) method [4], which combines several SVMs of

different kernels. For each image, we have the training sam-

ples {ri, li}
H
i=1 from the weak saliency map M̌w (See Sec-

tion 3.2) where ri is the i-th sample, li represents the binary

label of the sample and H indicates the number of the sam-

ples. The linear combination of kernels {km}Mm=1 is defined

by

k(r, ri) =

M
∑

m=1

βmkm(r, ri),

M
∑

m=1

βm = 1, βm ∈ R+, (5)

where βm is the kernel weight and M denotes the number

of the weak classifiers, and M = Nf ×Nk. Here, Nf is the

number of the features and Nk indicates the number of the

kernels (e.g., Nf = 3, Nk = 4 in this work). For different

feature sets, the decision function is defined as a convex

combination,

Y (r) =

M
∑

m=1

βm

H
∑

i=1

αilikm(r, ri) + b̄, (6)

where αi is the Lagrange multiplier while b̄ is the bias in

the standard SVM algorithm. The parameters {αi}, {βm}
and b̄ can be learned from a joint optimization process.

We note that (6) is a conventional function for the MKL

method. In this paper we use the boosting algorithm in-

stead of the simple combination of single-kernel SVMs in

the MKL method. We rewrite (6) as

Y (r) =

M
∑

m=1

βm(α⊤
km(r) + b̄m), (7)

where α = [α1l1, α2l2, . . . , αH lH ]⊤, km(r) =

[km(r, r1), km(r, r2), . . . , km(r, rH)]⊤ and b̄ =
∑M

m=1 b̄m.

By setting the decision function of a single-kernel SVM as

zm(r) = α
⊤
km(r) + b̄m, the parameters can be learned

straightforwardly. Thus, (7) can be rewritten as

Y (r) =
J
∑

j=1

βjzj(r). (8)

In order to compute the parameters βj , we use the Adaboost

method and the parameter J in (8) denotes the number of it-

erations of the boosting process. We consider each SVM as

a weak classifier and the final strong classifier Y (r) is the

weighted combination of all the weak classifiers. Starting

with uniform weights, ω1(i) = 1/H, i = 1, 2, . . . , H , for

the SVM classifiers, we obtain a set of decision functions

{zm(r)},m = 1, 2, . . . ,M . At the j-th iteration, we com-

pute the classification error for each of the weak classifiers,

ǫm =

∑H
i=1 ω(i)|zm(ri)|(sgn(−lizm(ri)) + 1)/2

∑H
i=1 ω(i)|zm(ri)|

, (9)

where sgn(x) is the sign function, which equals to 1 when

x > 0 and −1 otherwise. We locate the decision function



zj(r) with the minimum error ǫj , i.e., ǫj = min1≤m≤M ǫm.

Then the combination coefficient βj is computed by βj =
1
2 log

1−ǫj
ǫj

· 1
2 (sgn(log

1−ǫj
ǫj

) + 1). Note that βj must be

larger than 0, indicating ǫj < 0.5, which accords with the

basic hypothesis that the boosting method could make the

weak classifiers into a strong one. In addition, we update

the weight using the following equation,

ωj+1(i) =
ωj(i)e

−βj lizj(ri)

2
√

ǫj(ǫj − 1)
. (10)

After J iterations, all the βj and zj(r) are computed and we

have a boosted classifier (8) as the saliency model learned

directly from an input image. We apply this strong salien-

cy model to the test samples (based on all the superpixels

of an input image), and a pixel-wise saliency map is thus

generated.

To improve the accuracy of the map, we first use the

Graph Cut method to smooth the saliency detection result-

s. Next, we obtain the strong saliency map M̌s by further

enhancing the saliency map with the guided filter [13] as

it has been shown to perform well as an edge-preserving

smoothing operator.

3.4. Multiscale Saliency Maps

The accuracy of the saliency map is sensitive to the num-

ber of superpixels as salient objects are likely to appear at

different scales. To deal with the scale problem, we gen-

erate four layers of superpixels with different granularities,

where N = 100, 150, 200, 250 respectively. We represen-

t the weak saliency map (See Section 3.2) at each scale as

{M̌wi
} and the multiscale weak saliency map is comput-

ed by Mw = 1
4

∑4
i=1 M̌wi

. Next, the training sets from

the four scales are used to train one strong saliency model

and the test sets (based on all the superpixels from four s-

cales) are tested by the learned model simultaneously. Four

strong saliency maps from four scales are constructed (See

Section 3.3), denoted as {M̌si}, i = 1, 2, 3, 4. Finally, we

obtain the final strong saliency map as Ms =
1
4

∑4
i=1 M̌si .

As such, the proposed method is robust to scale variation.

3.5. Integration

The proposed weak and strong saliency maps have com-

plementary properties. The weak map is likely to detect fine

details and to capture local structural information due to the

contrast-based measure. In contrast, the strong map works

well by focusing on global shapes for most images except

the case when the test background samples have similari-

ty with the positive training set or large differences com-

pared to the negative training set, or vice versa for the test

foreground sample. In this case, the strong map may mis-

classify the test regions as shown in the bottom row of Fig-

ure 1. Thus we integrate these two maps by a weighted

combination,

M = σMs + (1− σ)Mw, (11)

where σ is a balance factor for the combination, and σ =
0.7 to weigh the strong map more than the weak map, and

M is the final saliency map via bootstrap learning. More

discussions about the values of σ can be found in the sup-

plementary document.

4. Experimental Results

We present experimental results of 22 saliency detection

methods including the proposed algorithms on six bench-

mark datasets. The ASD dataset, selected from a bigger

image database [25], contains 1,000 images, and is labeled

with pixel-wise ground truth [1]. The THUS dataset [9]

consists of 10, 000 images where all images are labeled

with pixel-wise ground truth. The SOD dataset [26] is

composed of 300 images from the Berkeley segmentation

dataset where each one is labeled with salient object bound-

aries, based on which the pixel level ground truth [34] is

built. Some of the images in the SOD dataset include more

than one salient object. The SED2 dataset [3] contains 100
images which are labeled with pixel-wise ground truth an-

notations. It is challenging due to the fact that every image

has two salient objects. The Pascal-S dataset [24] contains

850 images which are also labeled with pixel-wise ground

truth. For comprehensive evaluation, we use all the im-

ages in the Pascal-S dataset for test instead of using 40%
for training and the rest for test as [24]. The DUT-OMRON

dataset [38] contains 5168 challenging images with pixel-

wise ground truth annotations. All the experiments are car-

ried out using MATLAB on a desktop computer with an In-

tel i7-3770 CPU (3.4 GHz) and 32GB RAM. For fair com-

parison, we use the original source code or the provided

saliency detection results in the literature. The MATLAB

source code is available on our project site.

We first evaluate the proposed algorithms and other 19

state-of-the-art methods including the IT98 [16], SF [28], L-

RMR [30], wCO [43], GS SP [34], XL13 [36], RA10 [29],

GB [12], LC [41], SR [15], FT [1], CA [11], SVO [8],

CBsal [18], GMR [38], GC [10], HS [37], RC-J [9] and

DSR [23] methods on the ASD, SOD, SED2, THUS and

DUT-OMRON datasets. In addition, the DRFI [19] method

uses images and ground truth for training, which contains

part of the ASD, THUS and SOD datasets, and the result-

s on the Pascal-S dataset are not provided. Accordingly,

we only compare our method with the DRFI model on the

SED2 dataset. Therefore, our methods are evaluated with

20 methods on the SED2 datasets. The MSRA [25] dataset

consists of 5,000 images. Since more than 3,700 images

in the MSRA dataset are included in the THUS dataset, we

do not present the evaluation results on this dataset due to

space limitations.



(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n)
Figure 5. Comparison of our saliency maps with ten state-of-the-art methods. Left to right: (a) input (b) GS SP [34] (c) wCO [43]

(d) LRMR [30] (e) GMR [38] (f) DSR [23] (g) XL13 [36] (h) HS [37] (i) RC-J [9] (j) GC [10] (k) SF [28] (l) Ours (m) wCO-bootstrapped

(n) ground truth. Our model is able to detect both the foreground and background uniformly.

4.1. Qualitative Results

We present some results of saliency maps generated

by twelve methods for qualitative comparison in Figure 5,

where “wCO-bootstrapped” means the wCO model boot-

strapped by the proposed learning approach. The saliency

maps generated by the proposed algorithms highlight the

salient objects well with fewer noisy results. We note that

these salient objects appear at different image locations al-

though the center-bias is used in the proposed algorithm.

The detected foreground and background in our maps are

smooth due to the using of the Graph Cut and guided filter-

ing methods. As a result of using both weak (effective for

picking up details) and strong (effective for discriminating

boundaries) saliency maps, the proposed bootstrap learning

algorithm performs well for images containing multiple ob-

jects as shown in the bottom two rows of Figure 5. Further-

more, due to the contribution of the LBP features (effective

for texture classification), the proposed method is able to

detect salient objects accurately despite similar appearance

to the background regions as shown in the fourth and fifth

rows of Figure 5. More results can be found in the supple-

mentary document.

4.2. Quantitative Results

We use the Precision and Recall (P-R) curve to evaluate

all the methods. We set the fixed threshold from 0 to 255

with an increment of 5 for a saliency map with consisten-

t gray value, thus producing 52 binary masks. Using the

pixel-wise ground truth data, 52 pairs of average P-R values

of all the images included in the test datasets are comput-

ed. Figure 6 shows the P-R curves where several state-of-

the-art methods and the proposed algorithms perform well.

To better assess these methods, we compute the Area Un-

der ROC Curve (AUC) for the best performing methods.

Table 1 shows that the proposed algorithms perform favor-

ably against other state-of-the-art methods in terms of AUC

on all the six datasets that contain both single and multiple

salient objects.

In addition, we measure the quality of the saliency map-

s using the F-Measure by adaptively setting a segmenta-

tion threshold for binary segmentation [1]. The adaptive

threshold is twice the average value of the whole salien-

cy map. Each image is segmented with superpixels and

masked out if the mean saliency values are lower than the

adaptive threshold. The average precision and recall values

are computed based on the generated binary masks and the

ground truth while the F-Measure is computed by

Fη =
(1 + η2)× Precision×Recall

η2 × Precision+Recall
, (12)

and η2 is set to 0.3 to weigh precision more than recall.

Figure 7(a) shows the F-Measure values of the evaluated

methods on the six datasets. Overall, the proposed algo-

rithms perform well (with top or second values) against the

state-of-the-art methods.

4.3. Analysis of the Bootstrap Saliency Model

Every component in the proposed algorithm contributes

to the final saliency map. Figure 7(b) shows the perfor-

mance of each step in the proposed method, i.e., the dark

channel prior, graph cut, weak saliency map, and strong

saliency map, among which the dark channel prior appears

to contribute least but is still indispensable for the overall

performance. The proposed weak saliency model may gen-

erate less accurate results than several state-of-the-art meth-

ods, but it is efficient with less computational complexity.



HS 1 0.956859 0.932825 0.915226 0.901242 0.889679 0.879479

0.198502 0.529796 0.636434 0.689749 0.7209 0.74431 0.764197

Cbsal 1 0.971362 0.958368 0.947988 0.939012 0.930239 0.922293

0.198502 0.596668 0.689279 0.745228 0.784004 0.811859 0.833464

wCO 1 0.991373 0.984814 0.978828 0.972422 0.966175 0.959811

0.198502 0.34036 0.420089 0.487547 0.546427 0.598013 0.640131

GMR 1 0.996639 0.993223 0.988612 0.983668 0.978369 0.972685

0.198502 0.275404 0.340007 0.39482 0.444039 0.493797 0.542221

SF 1 0.96539 0.92304 0.881957 0.841839 0.801431 0.761542

0.198502 0.264398 0.34321 0.411997 0.473571 0.522639 0.565179

XL13 1 0.999299 0.996734 0.992776 0.98805 0.981953 0.974305

0.198502 0.236202 0.272545 0.302544 0.328963 0.353891 0.377825

GC 1 0.886054 0.843728 0.813928 0.790586 0.767664 0.747103

0.198502 0.705022 0.769759 0.803371 0.825166 0.838617 0.850679

GB 1 0.988078 0.982603 0.977734 0.973411 0.969592 0.965436

0.198502 0.38423 0.427996 0.461323 0.489534 0.512009 0.530991

FT 1 0.981387 0.974862 0.969033 0.963843 0.959326 0.954786

DRFI 0.198502 0.633372 0.704613 0.747522 0.774438 0.793867 0.808803

Ours 1 0.999898 0.999571 0.998489 0.99552 0.991584 0.987516

0.198502 0.210277 0.248633 0.317062 0.403944 0.483701 0.552295

wCO-ours 1 0.999705 0.998742 0.995912 0.991479 0.987154 0.983048

0.198502 0.2216 0.302111 0.460789 0.618884 0.702657 0.750125
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0.982384 0.97312 0.964101 0.95479 0.945668 0.936532 0.927745

0.198502 0.614823 0.679576 0.718003 0.745381 0.765974 0.782669 0.797484

1 0.989102 0.98598 0.982513 0.978928 0.974681 0.970165 0.965189

0.198502 0.409187 0.461513 0.51417 0.561826 0.602324 0.637095 0.669028

1 0.997455 0.992517 0.985509 0.975782 0.962913 0.947228 0.928877

0.198502 0.228139 0.260025 0.290259 0.31854 0.344854 0.369555 0.392639

1 0.988088 0.984873 0.982108 0.978837 0.97597 0.973555 0.970536

0.198502 0.445325 0.494336 0.533049 0.567411 0.598715 0.627108 0.652996

1 0.998419 0.995459 0.990654 0.983804 0.974234 0.961022 0.944978

0.198502 0.240503 0.276504 0.307885 0.335606 0.361047 0.384458 0.406513

1 0.896744 0.84615 0.806577 0.771966 0.741939 0.714665 0.689201

0.198502 0.25991 0.304303 0.341013 0.374589 0.402885 0.427825 0.450075

1 0.999749 0.999104 0.997843 0.995607 0.99253 0.98726 0.981167

0.198502 0.217465 0.249498 0.287794 0.330774 0.375495 0.420845 0.465218

1 0.997904 0.997824 0.997806 0.997798 0.99779 0.997773 0.997734

0.198502 0.22674 0.22713 0.227236 0.227349 0.227497 0.227706

1 0.756989 0.602621 0.498125 0.41962 0.357466 0.3072

0.198502 0.326707 0.373896 0.404479 0.427229 0.444462 0.458069 0.469238

1 0.999989 0.999981 0.999963 0.999943 0.999863 0.999743 0.999635

0.198502 0.19984 0.200697 0.201901 0.203536 0.20593 0.2092 0.213592

1 0.999898 0.999571 0.998489 0.99552 0.991584 0.987516 0.982987

0.198502 0.210277 0.248633 0.317062 0.403944 0.483701 0.552295 0.609845

1 0.999705 0.998742 0.995912 0.991479 0.987154 0.983048 0.979367

0.198502 0.2216 0.302111 0.460789 0.618884 0.702657 0.750125 0.783839
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1 0.987069 0.980847 0.97397 0.965677 0.956743 0.946469 0.935119

0.222103 0.314634 0.370988 0.416672 0.458815 0.497213 0.533738 0.568017

1 0.951958 0.903791 0.859761 0.818823 0.780645 0.744503 0.710118

0.222103 0.293593 0.362877 0.419597 0.466306 0.505243 0.538392 0.566386

1 0.968468 0.923185 0.86687 0.805067 0.741772 0.679701 0.620602

0.222103 0.297256 0.36568 0.420626 0.464475 0.499184 0.527023 0.549691

1 0.91468 0.877391 0.852093 0.832689 0.8159 0.800529 0.786148

0.222103 0.552342 0.633414 0.676323 0.705022 0.726102 0.744269

1 0.95948 0.935991 0.916691 0.900049 0.884974 0.871189

0.222103 0.54934 0.633719 0.684846 0.720312 0.747557 0.769427

1 0.977386 0.964358 0.952411 0.941185 0.929486 0.919761 0.910072

0.222103 0.425414 0.48894 0.539133 0.580378 0.615381 0.64351 0.671294

1 0.761261 0.693828 0.651438 0.61917 0.592876 0.569939 0.549134

0.222103 0.709993 0.757686 0.782122 0.798695 0.811369 0.820342 0.827856

1 0.950287 0.934015 0.918569 0.905108 0.893063 0.881937 0.871236

0.222103 0.656596 0.70949 0.742347 0.764508 0.781974 0.796488 0.809351

1 0.980551 0.972205 0.964589 0.957946 0.951684 0.9453 0.939189

0.222103 0.402736 0.44558 0.474548 0.497976 0.518036 0.535715 0.551826

1 0.999773 0.998923 0.996485 0.991469 0.983682 0.973703 0.962381

0.222103 0.242388 0.286028 0.347219 0.418188 0.487416 0.548543

1 0.999103 0.995535 0.986617 0.9695 0.951501 0.937318 0.925193

0.222103 0.258531 0.341484 0.474535 0.612212 0.692879 0.739694 0.773425
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(a) ASD dataset (b) THUS dataset
1 0.920397 0.900215 0.880188 0.85977 0.835566 0.807048 0.775269

0.278717 0.318609 0.343403 0.367061 0.385807 0.405899 0.419001

1 0.889093 0.779385 0.690937 0.619392 0.561021 0.511016 0.465889

0.278717 0.300779 0.325901 0.34763 0.365899 0.385027 0.40402 0.424071

1 0.982312 0.956932 0.933906 0.914687 0.896828 0.879444 0.861938

0.278717 0.304591 0.332426 0.354204 0.372869 0.389554 0.405172 0.419798

1 0.811953 0.724261 0.674243 0.637425 0.603023 0.577778 0.555252

0.278717 0.403439 0.450895 0.482919 0.50621 0.523534 0.536015 0.545794

1 0.908959 0.856114 0.818419 0.785698 0.760926 0.739447 0.717638

0.278717 0.411477 0.465892 0.502491 0.529808 0.550709 0.568408 0.584325

1 0.981352 0.965058 0.94625 0.930765 0.914455 0.897402 0.876269

0.278717 0.343307 0.370144 0.398938 0.420865 0.444195 0.464804 0.481924

1 0.864981 0.855784 0.846473 0.836489 0.825607 0.813837 0.800785

0.278717 0.450058 0.467134 0.484738 0.499938 0.516507 0.534666 0.550987

1 0.951824 0.935726 0.91753 0.903515 0.889645 0.876273 0.862776

0.278717 0.341097 0.356443 0.370743 0.383495 0.394081 0.407028 0.418978

1 0.828456 0.774615 0.734617 0.704402 0.677636 0.654846 0.634945

0.278717 0.517502 0.562637 0.588039 0.606665 0.622914 0.63587 0.650379

1 0.998903 0.993501 0.979455 0.95613 0.919795 0.882807 0.845409

0.278717 0.283778 0.301968 0.338161 0.387345 0.438927 0.484032 0.522597

1 0.994851 0.972493 0.920558 0.850387 0.790701 0.753508 0.725791

0.278717 0.288398 0.33035 0.41584 0.509834 0.576931 0.612973 0.638586
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1 0.990269 0.976658 0.960624 0.942776 0.922811 0.899572 0.875362

0.278717 0.295729 0.315601 0.334325 0.35178 0.368478 0.384358 0.399934

1 0.875416 0.822041 0.782123 0.750731 0.722971 0.69682 0.672548

0.278717 0.46948 0.520541 0.555101 0.580696 0.600371 0.617507 0.632632

1 0.908959 0.856114 0.818419 0.785698 0.760926 0.739447 0.717638

0.278717 0.411477 0.465892 0.502491 0.529808 0.550709 0.568408 0.584325

1 0.989806 0.974386 0.957521 0.937717 0.91511 0.890587 0.863454

0.278717 0.303741 0.326643 0.34706 0.366539 0.384716 0.402191 0.418906

1 0.826139 0.738274 0.671189 0.616628 0.571376 0.532 0.495953

0.278717 0.305291 0.323485 0.338826 0.352695 0.365443 0.379055 0.390106

1 0.992001 0.976574 0.956097 0.934126 0.908171 0.880446 0.852426

0.278717 0.295655 0.315207 0.33632 0.358456 0.381386 0.402669 0.422975

1 0.969722 0.969285 0.9692 0.969114 0.968957 0.968752

0.278717 0.305168 0.305385 0.305473 0.305578 0.305748 0.306006 0.306416

1 0.864981 0.855784 0.846473 0.836489 0.825607 0.813837 0.800785

0.278717 0.450058 0.467134 0.484738 0.499938 0.516507 0.534666 0.550987

1 0.820011 0.663094 0.546597 0.455467 0.382779 0.32432 0.276651

0.278717 0.353377 0.393224 0.421177 0.442881 0.460598 0.474906 0.486527

1 0.999164 0.998939 0.998476 0.997882 0.996979 0.995556 0.994192

0.278717 0.279978 0.280998 0.281767 0.282968 0.284667 0.286572 0.290644

1 0.998903 0.993501 0.979455 0.95613 0.919795 0.882807 0.845409

0.278717 0.283778 0.301968 0.338161 0.387345 0.438927 0.484032 0.522597

1 0.994851 0.972493 0.920558 0.850387 0.790701 0.753508 0.725791

0.278717 0.288398 0.33035 0.41584 0.509834 0.576931 0.612973 0.638586
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1 0.936126 0.922062 0.91379 0.901447 0.891325 0.882745 0.869951

0.213355 0.386271 0.453001 0.481837 0.516842 0.553192 0.592218 0.610487

1 0.952448 0.92478 0.904946 0.887637 0.868179 0.855509 0.845319

0.213355 0.574942 0.645992 0.689842 0.716141 0.736075 0.753745 0.773769

1 0.899414 0.827485 0.765704 0.713276 0.667121 0.623763 0.583773

0.213355 0.419311 0.534552 0.605753 0.656277 0.697904 0.727815 0.753631

1 0.981994 0.959752 0.938597 0.918975 0.89956 0.881011 0.863264

0.213355 0.238611 0.263392 0.282927 0.300164 0.316213 0.331714 0.347287

1 0.911909 0.865299 0.838978 0.821752 0.804198 0.785714 0.772567

0.213355 0.505345 0.581536 0.621193 0.642791 0.656156 0.668612 0.684892

1 0.880763 0.84456 0.816747 0.795086 0.773492 0.753965 0.740319

0.213355 0.533234 0.626902 0.699246 0.73825 0.758382 0.767909 0.779106

1 0.948966 0.930895 0.90895 0.876858 0.862216 0.854197 0.847909

0.213355 0.465231 0.509529 0.575584 0.595728 0.615217 0.628555 0.647151

1 0.759301 0.700876 0.662971 0.6293 0.599371 0.573255 0.548363

0.213355 0.756712 0.804471 0.830692 0.844333 0.85412 0.858786 0.859991

1 0.965879 0.954867 0.942914 0.931523 0.922264 0.913002 0.902293

0.213355 0.269846 0.283322 0.300273 0.315331 0.327719 0.344419 0.354018

1 0.883156 0.855872 0.835237 0.819011 0.804484 0.793123 0.783876

0.213355 0.648819 0.736792 0.778927 0.803447 0.817378 0.828515 0.836982

1 0.999494 0.998045 0.995005 0.988546 0.978136 0.962468 0.943978

0.213355 0.226993 0.266335 0.322554 0.383245 0.439602 0.491917 0.538216

1 0.993875 0.984345 0.970906 0.94491 0.917434 0.892055 0.874709

0.213355 0.238523 0.33158 0.449444 0.55163 0.61131 0.661932 0.698562
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1 0.983056 0.965443 0.947118 0.924838 0.901323 0.877169 0.852466

0.213355 0.257229 0.300394 0.3343 0.362574 0.38941 0.414475 0.437278

1 0.911357 0.869239 0.836998 0.808718 0.786105 0.765419 0.747873

0.213355 0.539653 0.620679 0.665437 0.700039 0.729821 0.752567 0.770373

1 0.887505 0.869648 0.850465 0.834849 0.82046 0.806779 0.795082

0.213355 0.502608 0.576543 0.627723 0.65775 0.687091 0.705846 0.718395

1 0.993861 0.983784 0.973254 0.961812 0.949822 0.93689

0.213355 0.262551 0.302232 0.334684 0.360886 0.385321 0.408389 0.429299

1 0.921097 0.881372 0.848972 0.821028 0.794367 0.769576 0.746927

0.213355 0.294889 0.362692 0.423412 0.471221 0.514498 0.54928 0.582565

1 0.996323 0.993363 0.988582 0.981045 0.969616 0.953867 0.939025

0.213355 0.22379 0.240993 0.264212 0.288098 0.316204 0.349571 0.384918

1 0.967794 0.967424 0.967354 0.967333 0.967291 0.967185 0.966822

0.213355 0.232467 0.232496 0.232507 0.232547 0.232629 0.232772

1 0.841261 0.825767 0.816857 0.806882 0.797977 0.787129 0.780156

0.213355 0.430695 0.465339 0.505593 0.536024 0.561506 0.585339 0.612561

1 0.809991 0.676959 0.576438 0.497468 0.433664 0.380941 0.336528

0.213355 0.364592 0.435841 0.475014 0.503376 0.524367 0.54078 0.555837

1 0.999984 0.999939 0.999842 0.999618 0.999117 0.998538 0.997698

0.213355 0.213501 0.213812 0.214274 0.215091 0.215989 0.217263 0.219156

1 0.999494 0.998045 0.995005 0.988546 0.978136 0.962468 0.943978

0.213355 0.226993 0.266335 0.322554 0.383245 0.439602 0.491917 0.538216

1 0.993875 0.984345 0.970906 0.94491 0.917434 0.892055 0.874709

0.213355 0.238523 0.33158 0.449444 0.55163 0.61131 0.661932 0.698562
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(c) SOD dataset (d) SED2 dataset
1 0.965883 0.95398 0.942742 0.925081 0.90906 0.890885

0.248389 0.285422 0.30894 0.326191 0.347144 0.365129 0.386078 0.407191

1 0.878138 0.769397 0.680655 0.606671 0.543551 0.488931 0.439762

0.248389 0.291383 0.318867 0.339337 0.361939 0.378982 0.395018 0.408844

1 0.9873 0.968333 0.950208 0.934101 0.918806 0.903473 0.887888

0.248389 0.277074 0.305775 0.328961 0.34844 0.36594 0.382191 0.397633

1 0.846864 0.778059 0.734257 0.701182 0.673356 0.649816 0.627203

0.248389 0.386484 0.433136 0.465611 0.48654 0.502147 0.517125 0.529202

1 0.938931 0.899931 0.870508 0.843321 0.818823 0.796207 0.774922

0.248389 0.375932 0.432296 0.466385 0.494078 0.518836 0.538854 0.556143

1 0.979326 0.966887 0.953031 0.94211 0.930923 0.918466 0.904709

0.248389 0.308492 0.338046 0.363343 0.385162 0.407627 0.426283 0.451115

1 0.5269 0.429284 0.376869 0.341243 0.311992 0.28854 0.270033

0.248389 0.485926 0.519804 0.541968 0.558288 0.569247 0.579269 0.586938

1 0.890918 0.853066 0.825251 0.802656 0.784211 0.767143 0.750837

0.248389 0.474668 0.511158 0.535236 0.552803 0.567355 0.58002

1 0.947408 0.926569 0.910012 0.897208 0.884389 0.871442 0.858831

0.248389 0.315744 0.335085 0.348504 0.360016 0.370742 0.382424 0.391502

1 0.998558 0.994203 0.98472 0.967267 0.941691 0.911625 0.883466

0.248389 0.253438 0.270651 0.305467 0.352755 0.402201 0.444531 0.478597

1 0.994877 0.980451 0.949376 0.897116 0.849466 0.817102 0.792197

0.248389 0.25874 0.295281 0.369636 0.462459 0.522307 0.556053 0.579995
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1 0.990412 0.975769 0.957573 0.936719 0.914022 0.889692 0.864076

0.248389 0.274154 0.298187 0.31799 0.335862 0.352273 0.367438 0.381454

1 0.865216 0.807304 0.759725 0.721945 0.691511 0.665219 0.642916

0.248389 0.436554 0.486611 0.51764 0.53937 0.55714 0.572755 0.586136

1 0.989697 0.974834 0.95781 0.937258 0.914989 0.889975 0.863607

0.248389 0.275304 0.29781 0.316962 0.333716 0.349298 0.363896 0.377602

1 0.840079 0.768997 0.714843 0.669288 0.628861 0.593356 0.561494

0.248389 0.274989 0.293339 0.307346 0.318316 0.327509 0.335946 0.344015

1 0.99368 0.984775 0.97179 0.955676 0.936512 0.914422 0.890593

0.248389 0.264879 0.284262 0.306064 0.328005 0.350179 0.372331 0.393778

1 0.978797 0.978456 0.978369 0.978316 0.978249 0.97815 0.977947

0.248389 0.277877 0.278161 0.278237 0.278307 0.278415 0.278616 0.278947

1 0.892977 0.886302 0.879399 0.869949 0.859089 0.847783 0.833327

0.248389 0.423379 0.437934 0.453332 0.466989 0.480445 0.493182 0.505408

1 0.912275 0.89578 0.87998 0.866285 0.850857 0.834572 0.820381

0.248389 0.416359 0.440591 0.460114 0.476494 0.489981 0.503228 0.515803

1 0.76475 0.604459 0.49216 0.407781 0.342621 0.290825 0.249069

0.248389 0.3217 0.352792 0.373129 0.388438 0.400207 0.40982 0.417906

1 0.999529 0.999318 0.998821 0.998364 0.996849 0.995714 0.994589
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Figure 6. P-R curve results on six datasets.
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Figure 7. (a) is the F-measure values of 21 methods on six datasets. Note that “ * (b)” shows improvement of state-of-the-art methods by

the bootstrap learning approach on the corresponding dataset as stated in Section 4.4. (b) shows performance of each component in the

proposed method on the ASD dataset.

4.4. Bootstrapping State-of-the-Art Methods

The performance of the proposed bootstrap learning

method hinges on the quality of the weak saliency model.

If a weak saliency model does not perform well, the pro-

posed algorithm is likely to fail as an insufficient number

of good training samples can be collected for constructing

the strong model for a specific image. Figure 8 shows ex-

amples where the weak saliency model does not perform

well, thereby affecting the overall performance of the pro-

posed algorithm. This motivates us that the proposed algo-

rithm can be used to bootstrap the performance of the state-



Table 1. AUC (Area Under ROC Curve) on the ASD, SED2, SOD, THUS, Pascal-S and DUT-OMRON datasets. The best two results are

shown in red and blue fonts respectively. The colomn named “wCO-b” denotes the wCO model after bootstrapping using the proposed

approach. The proposed methods rank first and second on the six datasets. The two rows named “ASD (b)” show the AUC of the saliency

results by taking other state-of-the-art saliency maps as the weak saliency maps in the proposed approach on the ASD dataset. All the

evaluation results of the state-of-the-art methods are largely improved over the original results as shown in the two rows named “ASD”.

wCO-b Ours HS RC-J GC DSR GS SP GMR SF XL13 CBsal

ASD .9904 .9828 .9683 .9735 .9456 .9774 .9754 .9700 .9233 .9609 .9628

SED2 .9399 .9363 .8387 .8606 .8618 .9136 .8999 .8620 .8501 .8470 .8728

SOD .8525 .8477 .8169 .8238 .7181 .8380 .7982 .7982 .8238 .7868 .7409

THUS .9723 .9635 .9322 .9364 .9032 .9504 .9462 .9390 .8510 .9353 .9270

Pascal-S .8774 .8682 .8368 .8379 .7479 .8299 .8553 .8315 .6830 .7983 .8087

DUT-OMRON .9063 .8794 .8604 .8592 .7931 .8922 .8786 .8500 .7628 .8160 .8419

ASD (b) - - .9876 .9869 .9773 .9872 .9888 .9844 .9723 .9791 .9811

DRFI wCO LRMR RA10 SVO GB FT CA SR LC IT98

ASD - .9805 .9593 .9326 .9530 .9146 .8375 .8736 .6973 .7772 .8738

SED2 .9349 .9062 .8886 .8500 .8773 .8448 .8185 .8585 .7593 .8366 .8904

SOD - .8217 .7810 .7710 .8043 .8191 .6006 .7868 .6695 .6168 .7862

THUS - .9525 .9199 .8810 .9280 .8132 .7890 .8712 .7149 .7673 .8655

Pascal-S - .8597 .8121 .7836 .8226 .8380 .6220 .7829 .6585 .6191 .7797

DUT-OMRON - .8927 .8566 .8264 .8662 .8565 .6758 .8137 .6799 .6549 .8218

ASD (b) - .9904 .9825 .9817 .9722 .9619 .9506 .9531 .8530 .8988 .9479

of-the-art methods (i.e., with better weak saliency maps).

Thus, we generate different weak saliency maps by apply-

ing the graph cut method on the results generated by the

state-of-the-art methods. Note that we only use two scales

instead of four scales for efficiency and use equal weight-

s in (11) (to better use these “weak” saliency maps) in the

experiments. Figure 9 shows the P-R curves on the ASD

dataset and Figure 7(a) shows the F-measure on six tested

datasets. In addition, the AUC measures are shown on the

two rows named “ASD (b)” of Table 1. These results show

that the performance of all state-of-the-art methods can be

significantly improved by the proposed bootstrap learning

algorithm. For example, the performance improvement of

the SR method over the original model for the AUC value

is 22.3%. Four methods, the wCO, DSR, HS and GS SP,

achieve over 0.987 using the proposed bootstrap learning

method and nine methods achieve higher than 0.98 in terms

of AUC. Four methods, the RC-J, GMR, wCO and DSR,

achieve over 0.98 for the highest precision value in the P-

R curve on the ASD dataset. The average F-measure per-

formance gains of 19 methods on the ASD, SOD, SED2,

Pascal-S, THUS and DUT-OMRON datasets are 10.5%,

14.0%, 5.2%, 14.4%, 11.5% and 9.9% respectively.

5. Conclusion

In this paper, we propose a bootstrap learning model

for salient object detection in which both weak and strong

saliency models are constructed and integrated. Our learn-

ing process is restricted within multiple scales of the input

image and is unsupervised since the training examples for

the strong model are determined by a weak saliency map

based on contrast and image priors. The strong saliency

Figure 8. Failure cases of the proposed algorithm as the weak

saliency maps do not perform well. Left to right: input, ground

truth, weak saliency map, strong saliency map and the bootstrap

saliency map generated by the proposed algorithm.
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Figure 9. P-R curve results show improvement of state-of-the-art

methods by the bootstrap learning approach on the ASD dataset.

model is constructed based on the MKB algorithm which

combines all the weak classifiers into a strong one using

the Adaboost algorithm. Extensive experimental result-

s demonstrate that the proposed approach performs favor-

ably against 20 state-of-the-art methods on six benchmark

datasets. In addition, the proposed bootstrap learning algo-

rithm can be applied to other saliency models for significant

improvement.
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