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Figure 1: Overview of proposed object segmentation algorithm using examples. Given a test image and a set of segmentation
examples, our algorithm first performs multiscale image matching in patches by PatchMatch. The local shape masks within
the matched patches are then transferred to represent the patch-wise segmentation candidates for the test image. Finally, local
mask candidates are selected based on MRF energy function to produce the segmentation in a coarse-to-fine manner.

Abstract

Object segmentation is highly desirable for image un-
derstanding and editing. Current interactive tools require a
great deal of user effort while automatic methods are usu-
ally limited to images of special object categories or with
high color contrast. In this paper, we propose a data-driven
algorithm that uses examples to break through these limits.
As similar objects tend to share similar local shapes, we
match query image patches with example images in mul-
tiscale to enable local shape transfer. The transferred lo-
cal shape masks constitute a patch-level segmentation solu-
tion space and we thus develop a novel cascade algorithm,
PatchCut, for coarse-to-fine object segmentation. In each
stage of the cascade, local shape mask candidates are se-
lected to refine the estimated segmentation of the previous
stage iteratively with color models. Experimental results
on various datasets (Weizmann Horse, Fashionista, Object
Discovery and PASCAL) demonstrate the effectiveness and
robustness of our algorithm.

1. Introduction

Object segmentation, separating a foreground object
from its background with a clear boundary, has long been
an important challenge for computer vision. It not only
provides mid-level representations for high-level recogni-
tion tasks [7] but also has immediate applications to image
editing [1]. Object segmentation is typically formulated as a
binary labeling problem on Markov Random Fields (MRFs)
with foreground/background appearance models [6].

Recent methods [29, 20] show that object segmentation
can be solved efficiently with a carefully prepared bounding
box around the target and further refined by user inputs. In
these interactive algorithms [6, 29, 20], color is commonly
used to separate foreground from background. Although
more complex image cues such as textures are shown to be
useful to improve segmentation performance [34], a criti-
cal source of information, object shape, is clearly missing
in these algorithms. Similar situations exist in salient object
segmentation [28, 25, 8] in that most of algorithms work
well when the images have high foreground-background
color contrast, but work poorly in cluttered images. A no-
table exception is Li et al.’s latest work [22] that achieves
impressive object segmentation results on the PASCAL im-
ages [10] by integrating shape sensitive object proposals [7]
with a classic saliency map [11]. On the other hand, in
model-based algorithms [5, 19, 18, 4, 36], shape is always
the major driving force for segmentation. Category-specific
shape models are usually designed [18] based on prior
knowledge or learned offline from training data [21, 36].
This category-specific nature limits the generalizability of
model based algorithms to handle unseen objects.

In this work, we propose a data-driven object segmenta-
tion algorithm that addresses the problems mentioned above
by using a database of existing segmentation examples.
Our algorithm requires neither offline training of category-
specific shape models nor prior knowledge of object shapes.
Instead we transfer shape masks from similar segmentation
examples to the test images by image retrieval and match-
ing. Compared to user- and saliency-driven algorithms, the
transferred shape cues help resolve segmentation ambigui-
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ties from appearance models.
Existing data-driven object segmentation algorithms [17,

2, 13, 32] mostly focus on transferring entire shape masks
by either window based or local features based image
matching. In this paper, however, we investigate a patch-
level local shape transfer scheme that finds candidate lo-
cal shape masks for each patch of a test image in multi-
ple scales through dense correspondences between query
and example images built by the PatchMatch algorithm [3].
Those candidate local shape masks indeed constitute an on-
line structured label space where object segmentation solu-
tions can be found. We thereby develop a novel cascade
algorithm for coarse-to-fine object segmentation. At each
stage, we define a color based MRF energy function with
the coarse shape mask estimated in the previous stage, and
select the local shape mask for each patch independently
with the minimum MRF energy to estimate a new shape
mask with finer details. This patch-wise segmentation pro-
vides an approximate solution to global energy minimiza-
tion, but a solution which is easier to solve in parallel. We
carry out local shape mask selection iteratively while updat-
ing the foreground/background color models. This iterative
procedure shares a similar idea with GrabCut [29], but it
operates patch-wise in a structured label space. Thus we
name our method PatchCut. We carry out experiments on
various object segmentation benchmark datasets with com-
parisons to leading example-, learning- and saliency-based
algorithms.

The contributions of this paper are summarized below:

• a novel nonparametric high-order MRF model via
patch-level label transfer for object segmentation;

• an efficient iterative algorithm (PatchCut) that solves
the proposed MRF energy function in patch-level with-
out using graph cuts;

• state-of-the-art performance on various object segmen-
tation benchmark datasets.

2. Related Work
Example-based object segmentation. Our work is closely
related to [17, 2] for object segmentation using examples.
In [17], the test image is matched with example images
by window proposals. By adding up the matched window
masks, the estimated segmentation prior contains more in-
formation about object location but less information about
object shape. As a result, its segmentation performance
largely depends on the final iterative GraphCut refinement
step. The algorithm in [2] involves two-step image match-
ing. The window proposals of the test image are first local-
ized on example images and then each localized image win-
dow is aligned using SIFT flow [24] with its corresponding
test window proposal to achieve deformable mask transfer.
Although a better shape prior could be obtained this way,

running SIFT flow for thousands of window proposals with
tens of examples inevitably results in considerable compu-
tational cost. Compared to [17, 2], our algorithm performs
multiscale dense matching using image patches, which can
be solved by PatchMatch efficiently. Instead of adding up
the transferred window masks, our algorithm estimates high
quality shape priors by selecting local mask candidates in
a coarse-to-fine manner so that the segmentation does not
fully depend on the refinement step.

Structured label space. Our proposed idea of using local
masks as solution space is inspired by recent structured for-
est based image labeling algorithms [15, 9]. In the training
stage, the clustering structure of label patches is exploited in
branching functions so that each leaf node stores one exam-
ple label patch. The label patches in all the leaf nodes con-
stitute a structured label space for edge detection [9] and
semantic labeling [15]. In our algorithm, the local shape
masks transferred from examples constitute another kind of
structured label space for object segmentation. In spirit,
both structured forests and our algorithm aim at preserv-
ing output structures (local context and shape) when mak-
ing predictions. However, an important difference is that
the structured label space in our algorithm is constructed
online by matching with examples, which is more flexible
and easier to generalize than offline training in structured
forests [15, 9].

3. Our Data-Driven Algorithm
Given a test image I, our goal is to estimate its segmenta-

tion Ŷ by using example images {Im,m = 1, 2, ...,M} and
their segmentation ground truth {Ym,m = 1, 2, ...,M}.
Figure 1 presents an overview of the proposed algorithm.

3.1. Local Shape Transfer

Our algorithm performs image matching to achieve
shape transfer from examples like most data-driven algo-
rithms. However, transferring entire masks in large im-
age windows may result in poor boundary quality [17],
while alignment, although improving the boundary qual-
ity, significantly increases the computational cost [2]. In
this work, we propose transferring local shape masks from
multiple scales. We build three-layer image pyramids by
downsampling both the test {Is, s = 1, 2, 3} and example
images {Ism,Ys

m, s = 1, 2, 3}. If the size of image I is
[h,w], the size of downsampled image in the sth layer is
[ h
23−s ,

w
23−s ]. For all three scales, we use image patches

of the same size to perform matching and mask transfer as
demonstrated in Figure 2. In each scale (s = 1, 2, 3), we
densely sample image patches of 16 × 16 at every 2 pix-
els {∆s

k, k = 1, 2, ...,K}, where K = h×w
4×26−2s

1. For each

1Padding is needed to ensure [ h
23−s ,

w
23−s ] divisible by 2.



Figure 2: Local shape transfer with multiscale PatchMatch.
The left part shows one query image from Fashionista in
three scales and the right part shows one example image and
its segmentation in image pyramid. For one query image
patch in red boxes, we find its best match in the example
image (red boxes) and transfer its center segmentation mask
in green boxes.

patch of the test image ∆s
k (green boxes in Figure 2), we ex-

tract a SIFT descriptor xs
k from its extended 32 × 32 patch

(red boxes in Figure 2). Therefore, the matching problem
between the test I and themth example Im can be described
by arg mink′ ‖xs

k − xs
k′m‖1,∀k = 1, 2, ...,K, where xs

k′m

is the SIFT descriptor extracted from the k′th patch ∆s
k′ of

the mth example. This nearest neighbor field problem is
solved efficiently by the PatchMatch algorithm [3]. As a
result, the test patch ∆s

k finds its match ∆s
k∗ in the mth ex-

ample with the cost dskm = ‖xs
k − xs

k∗m‖1.
We denote the local segmentation masks from the

matched patches in mth example as zskm = Ys
m(∆s

k∗),
which provide location and shape information for segment-
ing the test image. We argue that those local masks zskm
constitute a patch-wise segmentation solution space for the
test image; in other words, the segmentation mask of test
image Y can be well approximated by zskm. Note that
different methods for image dense correspondences have
been explored in [24, 14] to enable pixel-wise label trans-
fer, but their results are either constrained by the local
flow [24] or contaminated by relaxation noise [14]. Com-
pared to [24, 14], our method achieves structured label
transfer (local masks) through a more flexible matching al-
gorithm.

To examine the quality of local shape masks zskm, for
each patch ∆s

k we calculate the mean of its local masks
z̄sk = 1

M

∑
m zskm, and also find the best possible z̃sk using

the ground truth as reference. Note that z̃sk actually defines
the upper bound for local shape transfer. Obviously, the
mean shape prior mask Q̄s can be immediately estimated
by adding up z̄sk similar to [17]. Similarly, we can estimate

Figure 3: Shape prior masks estimated from mean masks
(top row) and best masks (bottom row) at different scales.
The masks are upsampled to the size of original image for
better visualization.

the oracle shape prior mask Q̃s from z̃sk.
Figure 3 demonstrates the mean and oracle shape prior

masks of different scales. At the coarse scale, the object is
well located but its boundary is blurry in the mean shape
prior masks. Moving towards finer scales, although some
parts of mean shape prior (legs) become clearer, other parts
(head and shoulder) turn out to be very noisy. This is be-
cause the very local structures of image patches at the finer
scales preserve well the edge patterns during matching, but
local masks may have inconsistent foreground/background
relationship. Meanwhile, both location and boundary qual-
ities of oracle shape prior masks keep getting better from
coarse to fine scales. This divergent result indicates that
good segmentation solutions can be obtained if we find
the right label patches at a fine scale, but without that
knowledge, the average results are far from satisfactory.
The above observations motivate the coarse-to-fine strat-
egy where we start with a good approximation at the coarse
scale which then leads us to choose the right label patches
at the fine scale.

3.2. PatchCut

In this section, we introduce a novel algorithm to gradu-
ally estimate the shape prior Q̂s in a coarse-to-fine manner.
In particular, at the sth scale, given the shape prior from the
previous scale Q̂s−1, the finer shape prior Q̂s is estimated
using candidate local shape masks zskm. At the end, the bi-
nary segmentation Ŷ can be computed by thresholding the
shape prior at the finest scale.

MRF with shape prior. We start with reviewing a typical
object segmentation method based on shape prior, which
provides the fundamentals for our algorithm. Note that we
temporarily omit the scale index s to keep the description
clean. Object segmentation with shape prior is commonly



formulated as a MRF energy function [17, 2],

E(Y) =
∑
i∈V

U(yi) + γ
∑
i,j∈E

V (yi, yj) + λ
∑
i∈V

S(yi, qi).

(1)
where yi is the binary label at pixel i, qi is the probability
at pixel i of shape prior Q. The unary term for each pixel
U(yi) is the negative log probability of the label yi given
the pixel color ci and Gaussian Mixture Models (GMMs)
A1 and A0 for foreground and background color,

U(yi) = − logP (yi|ci,A1,A0). (2)

The pairwise term V (yi, yj) measures the cost of assign-
ing different labels to two adjacent pixels, which is usually
based on their color difference,

V (yi, yj) = exp(−α‖ci − cj‖2)I(yi 6= yj), (3)

where the parameter α is estimated by the mean color dif-
ference over the image and I(·) is an indicator function. The
shape term S(yi, qi) measures the inconsistency with shape
prior Q,

S(yi, qi) = − log qyi

i (1− qi)1−yi . (4)

This energy function can be solved by alternating two steps
in a way similar to the GrabCut algorithm [29]: 1) updating
GMM color models in (2) from the current segmentation
{A1,A0} ← Y; 2) solving the MRF energy function in (1)
with updated color models by GraphCut: Y ← {A1,A0}.
However, this method is too sensitive to the parameter λ.
On one hand, if the λ is large, the color models cannot cor-
rect the mistakes in the shape prior; on the other hand, if
the λ is small, the segmentation may deviate from the good
shape prior.

High order MRF with local shape transfer To use candi-
date local shape masks to resolve segmentation ambiguities,
we can naturally extend (1) to include a patch likelihood
Pcand(Y(∆k)) that encourages the label patch Y(∆k) for
image patch I(∆k) to be similar to some candidate local
shape mask zkm = Ym(∆km) for database image patch
Im(∆km):

E′(Y) = E(Y)−
∑
k

log(Pcand(Y(∆k))). (5)

The last term is the negative Expected Patch Log Likeli-
hood (EPLL), a formulation that Zoran and Weiss [37] use
for image patches to produce state-of-the-art results on in-
verse problems such as deblurring. Here we define the patch
likelihood on local shape masks by marginalizing out over
a hidden variable m∗k that indicates which database patch

∆km is selected for transfer to the output patch Y(∆k):

Pcand(Y(∆k)) =

M∑
m=1

P (Y(∆k),m∗k = m)

=

M∑
m=1

P (Y(∆k)|m∗k = m)P (m∗k = m)

=

M∑
m=1

exp(−η||Y(∆k)− zkm||22)

Z1

exp(−τdkm)

Z2
,

where the second term expresses the probability by image
appearance that we want to transfer the mth candidate label
patch and the first term expresses that the output label patch
should be similar to the transferred patch. Note that Z1, Z2

are normalization terms, and dkm is the match cost intro-
duced in the previous section. We assume that η is large
to encourage the output label patches Y(∆k) to be as sim-
ilar to the selected candidate patches zkm∗k as possible. For
large η and distinct zkm, we have

Pcand(Y(∆k)) ≈
{

exp(−τdkm)/Z2 if Y(∆k) = zkm
0 otherwise

(6)
and

E′(Y) ≈ E(Y) + τ
∑
k

H(Y(∆k)), (7)

where

H(Y(∆k)) =

{
dkm if Y(∆k) = zkm
∞ otherwise . (8)

Note that this approximate energy (7) is related to the Non-
parametric Higher-order Random Field (NHRF) introduced
in [26] that considers top-down local appearance match-
ing (8) but not the bottom-up global image cues (1).

Approximate optimization on patches. The high order
term H(Y(∆k)) actually enforces label patch selection
among all the local shape masks zkm, and thus the solu-
tions of energy function E′(Y) do not exist when selected
label patches disagree in any overlapping areas. To address
this issue, we introduce an auxiliary variable zk to indicate
the selected label patch zk ∈ {zk1, zk2, ..., zkM} on the kth

patch ∆k and thus rewrite the energy (7) by

E′(Y, {zk}) ≈ E(Y) + τ
∑
k

H(zk), s.t. Y(∆k) = zk.

We notice that the energy E(Y) can be further decomposed
into a summation of local energies on Y(∆k) = zk

E′(Y, {zk}) ≈ κ
∑
k

E(zk)+τ
∑
k

H(zk), s.t. Y(∆k) = zk,

where the constant κ is inversely proportional to the number
of patches superimposing on a single pixel. To tolerate the



inconsistency between Y(∆k) and zk, we convert it into an
unconstrained problem by introducing a quadratic penalty
on each patch

E′(Y, {zk}) ≈
∑
k

(κE(zk)+τH(zk)+
β

2
‖Y(∆k)−zk‖2).

(9)
In a similar spirit with the dual decomposition method [33],
this quadratic penalty energy function (9) can be minimized
by alternatively solving a series of independent slave prob-
lems on patch zk and a master problem on Y. However,
for sufficiently large β, we can approximately solve (9) by
a simple two-step minimization:

ẑk = arg min
zk

κE(zk) + τH(zk),∀k (10)

Ŷ = arg min
Y

∑
k

1

2
‖Y(∆k)− ẑk‖2. (11)

Note that (10) can be immediately solved by evaluating
the energies of all the local mask candidates in parallel.
To solve (11), we need to consider the inconsistency of
overlapping ẑk. By introducing a soft segmentation mask
(shape prior) 0 ≤ Q ≤ 1 for Y, we first solve Q̂ =
arg minQ

∑
k ‖Q(∆k)− ẑk‖2 by averaging all the selected

candidates ẑk and then compute Ŷ by thresholding Q̂ at
0.5.

Algorithm 1 The single scale PatchCut algorithm.

1: while not converged do
2: for each patch ∆k, select the candidate local shape

mask ẑk by (10)
3: estimate the shape prior Q̂ by averaging ẑk and the

segmentation Ŷ by (11)
4: update the foreground and background GMM color

models {A1,A0} by (2).
5: end while

Given the current segmentation Ŷ, we further update the
color models {A1,A0} in (2). Iteratively, the high-order
MRF energy (7) is minimized using local shape mask can-
didates. We summarize this procedure, dubbed as PatchCut,
in Algorithm 1.

Cascade. Using the PatchCut algorithm at a single scale,
we assemble the cascade object segmentation algorithm in
Figure 4. The cascade is initialized by averaging the global
shape masks transferred from examples at the coarsest scale
Q̂0 = 1

M

∑
m Y1

m. Note that other soft segmentation meth-
ods can also be used for initialization [11, 22]. At each
scale, we run Algorithm 1 with the previously estimated
shape prior Q̂s−1, color models A1,A0 and candidate local
shape masks zskm. The algorithm proceeds untill the scale
s = 3 is reached. The final object segmentation is inferred
by thresholding the shape prior Q̂3, denoted as Ŷt, or fur-
ther refined by iterative graph cuts in (1), denoted as Ŷr.

Figure 4: PatchCut cascade for coarse-to-fine object seg-
mentation.

4. Experimental Results

We present experimental results on various object seg-
mentation datasets (Fashionista [35], Weizmann Horse [5],
Object Discovery [30], and PASCAL [10]). More results
can be found in our website https://eng.ucmerced.
edu/people/jyang44. The term PatchCut soft de-
notes the shape mask Q̂3, PatchCut thres denotes the binary
segmentation after thresholding Ŷt, and PatchCut denotes
the binary segmentation after refinement Ŷr.

Implementation Details. To perform our algorithm, we
retrieve relevant examples from a database of existing seg-
mentations. We use Bag-of-Words (BoW) features [31] on
category-specific datasets such as Fashionista, Weizmann
Horse and Object Discovery, and use image features ex-
tracted from the 7th layer of convolutional networks (Con-
vNet 2) [12] on the PASCAL dataset for nearest neighbor
image search. The number of retrievals is set to M = 16.
We set γ = 0.5 for the pairwise term, λ = 0.5 for the shape
term in (1), τ = 1.0 for the match cost term in (7), the num-
ber of Gaussian components to 5 for both foreground and
background GMM color models in (2). We use the same set
of parameters in all the experiments.

4.1. Fashionista

This dataset [35] consists of 700 street shots of fash-
ion models with various poses, cluttered background and
complex appearance. All the images have the same size of
600x400 pixels. We run leave-one-out tests on this dataset,
which means that for each image, we run object segmenta-
tion by using the remaining 699 images as the database. We
present some segmentation results in Figure 5. In this ex-
periment, we compare our algorithm with the widely used

2The ConvNet is pre-trained on the ImageNet dataset [16].

https://eng.ucmerced.edu/people/jyang44
https://eng.ucmerced.edu/people/jyang44
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Figure 5: Qualitative results on Fashionista.

GrabCut baseline [29]. We use the OpenCV implementa-
tion for GrabCut by providing a bounding box with 8 pixels
from the image borders at each side. We evaluate the object

Table 1: Segmentation performance on Fashionista.
Jaccard (%)

GrabCut 64.23
PatchCut thres 86.25

PatchCut 88.33
PatchCut thres upper bound 95.72

PatchCut upper bound 95.20

segmentation performance by mean Jaccard (Intersection-
Over-Union) score (|Ŷ ∩Y|/|Ŷ ∪Y|) in Table 1. By sim-
ply thresholding the estimated shape masks, the PatchCut
algorithm significantly outperforms (by more than 20%) the
GrabCut baseline, and the results can be further improved
by GrabCut refinement from 86.25% to 88.33%. Figure 5
shows that the refinement mainly occurs around the object
contours. To take a closer look at the PatchCut performance,
we calculate the segmentation success rate as the percent-
age of tests that achieve Jaccard scores above certain levels.
Figure 6 shows that about 58% of tests achieve more than
90% Jaccard score while about 22% of tests achieve more
than 95% Jaccard score.

Upper bound performance. We also evaluate the upper
bound performance of the PatchCut algorithm. For each

Figure 6: Segmentation success rates on Fashionista.

test image, we estimate the oracle shape prior masks Q̃
using the ground truth segmentation Y, and thus produce
segmentation results. The mean Jaccard scores from the
upper bound segmentation results are as high as 95.72%
without refinement (Table 1) and the segmentation success
rate at Jaccard score level 95% is near 70% (Figure 6).
These upper bound results prove that the transferred local
shape masks from examples constitute a valid structured la-
bel space for object segmentation.

4.2. Weizmann Horse

Th Weizmann Horse dataset [5] is widely used for bench-
marking object segmentation algorithms. This dataset con-
sists of 328 horse images with side views. We follow a
typical evaluation protocol that uses 200 images for the
database and the remaining 128 for the test set. We present
some qualitative results in Figure 7. We evaluate ob-

Image GT PatchCut soft PatchCut

Figure 7: Qualitative results on Weizmanm Horse.

ject segmentation performance in terms of mean Jaccard
score and overall pixel-wise classification accuracy (Acc =
|Ŷ == Y|/|Y|). In Table 2, we compare PatchCut algo-
rithm with state-of-the-art example based algorithm using
Window Mask Transfer [17], and various leading learning
based algorithms based on Kernelized Structured SVM [4],
CRFs [23, 21] and Margin-Margin Boltzmann Machines
(BMs) [36]. Our algorithm performs better in terms of both



Table 2: Performance evaluation on Weizmann Horse.
Jaccard (%) Acc (%)

PatchCut thres 80.33 94.78
PatchCut 84.03 95.81

Kernelized Structured SVM [4] 80.10 94.60
Fragment-based CRFs [21] N/A 95.0

High-Order CRFs [23] 69.90 N/A
Max-Margin BMs [36] 75.78 90.71

Window Mask Transfer [17] N/A 94.70

mean Jaccard score and Accuracy. Especially, our algo-
rithm improves about 4% on mean Jaccard score. For horse
images, our algorithm usually generates high quality shape
prior around legs (Figure 7), but the iterated graph cuts re-
finement tends to cut off the legs because of the shrinking
bias towards shorter boundaries.

4.3. Object Discovery

This dataset consists of three object categories: airplane,
car and horse and their images are collected from Inter-
net. It is originally designed for evaluating object co-
segmentation [30] and recently used for object segmenta-
tion by Ahmed et al. [2]. This dataset is more challeng-
ing because the images generally have more complex ap-
pearance. Some images include more than one small target
and some images are outliers. For each category, we use
the same 100 test images as in [30, 2] and the rest as the
database. Figure 8 shows some qualitative results.

We compare our algorithm with the GrabCut baseline
(same implementation as Fashionista), a state-of-the-art co-
segmentation algorithm [30] and the latest example based
method [2] in Table 3. In the Airplane and Horse experi-

Table 3: Jaccard scores on Object Discovery.
Jaccard (%) Airplane Car Horse

GrabCut 63.29 67.63 50.32
Co-segmentation [30] 55.81 64.42 51.65

Ahmed et al. [2] 64.27 71.84 55.08
PatchCut thres 70.44 86.40 63.19

PatchCut 70.49 84.52 64.80

ments the refinement step improve the results only slightly
while in the Car experiment our algorithm achieves better
results without using refinement. The possible reason is that
the pixel-wise color models may confuse the shadows with
the bottom of the car while the shape prior estimated from
local masks better preserves high-level structures.

4.4. PASCAL

In this experiment, we present results for salient object
segmentation using the PASCAL VOC 2010 dataset [10].
This dataset is more challenging because the images are
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Figure 8: Qualitative results on Object Discovery.

from 20 object classes with large pose, shape and appear-
ance variations and occlusions. Li et al. [22] collect salient
object segmentation masks from human subjects for 850
images in the validation set. We use these images as the test
set. Note that salient object segmentation masks may not
be binary as subjects may disagree on the choice of salient
objects as shown in Figure 10.

On the other hand, we use all the images in the training
set to build our example database, and collect salient ob-
ject segmentation ground truth in a similar way as in [22].
Basically, for each image, we use the semantic labeling
provided by [27] as full segmentation, and ask 6 subjects
to select the salient object regions by clicking on them,
so the saliency value for each segment is defined as the
number of clicks it receives divided by the number of sub-
jects. Differently from previous experiments, we initial-
ize the PatchCut algorithm with the saliency maps gener-
ated by the GBVS algorithm [11], and its results are de-
noted as GBVS PatchCut soft, GBVS PatchCut thres and
GBVS PatchCut. We mainly compare with the state-of-the-
art algorithm, CPMC GBVS, presented in [22] which also
uses the GBVS saliency maps. Figure 10 shows some quali-
tative results from PatchCut and CPMC GBVS for compar-
isons.

Quantitative evaluation. We convert the ground truth
segmentation saliency maps into binary masks with three
thresholds: 0.1, 0.3, 0.5. Larger threshold means that



Figure 9: Comparing soft segmentation results at different saliency levels in terms of precision-recall curves. The dot on each
curve indicates the operating point that gives the best F-score.

Image GT CPMC GBVS GBVS PatchCut soft GBVS PatchCut

Figure 10: Comparing salient object segmentation results
on PASCAL.

less objects with higher saliency values are selected in
the ground truth. We first evaluate the soft segmenta-
tion masks (saliency maps) in terms of precision-recall
curves. We compare the GBVS PatchCut soft results
with CPMC GBVS and three recent saliency algorithms,
SF [28], GC [8] and PCAS [25]) in Figure. 9. Our al-
gorithm (GBVS PatchCut soft) performs favorably against
CPMC GBVS and clearly above other saliency algorithms.
Second, we evaluate binary segmentation results in terms of
mean Jaccard scores. We convert the CPMC GBVS results
into binary segmentation by tuning the threshold, and find
that its best mean Jaccard scores are obtained at the thresh-

Table 4: Jaccard scores on PASCAL.
Saliency level 0.1 0.3 0.5

GBVS GrabCut 45.84 45.25 44.90
CPMC GBVS [22] 59.43 60.58 60.75

GBVS PatchCut thres 60.08 60.22 59.27
GBVS PatchCut 62.02 62.15 61.14

CPMC PatchCut thres 61.37 62.64 62.76
CPMC PatchCut 63.74 64.92 64.97

old 0.3. Table 4 shows that our algorithm (GBVS PatchCut)
performs slightly better than CPMC GBVS, especially at
low saliency levels. This result also means that our algo-
rithm tends to select more objects than CPMC GBVS (see
examples in Figure 10).

We also initialize our PatchCut algorithm with the
soft segmentation masks generated by CPMC GBVS,
and its results are denoted as CPMC PatchCut soft,
CPMC PatchCut thres and CPMC PatchCut. With this
high quality initialization, PatchCut clearly outperforms
the state-of-the-art in terms of both precision-recall curve
(CPMC PatchCut soft in Figure 9) and the mean Jaccard
scores (CPMC PatchCut in Table 4).

5. Conclusions
In this paper, we present a data-driven object segmen-

tation algorithm using examples, which requires no offline
training of category-specific models and generalizes well to
novel objects. Our algorithm constructs an online struc-
tured label space for object segmentation by transferring
local shape mask candidates from examples. The MRF la-
beling problem is decomposed into a set of independent la-
bel patch selection sub-problems that are easier to solve in
parallel. Our algorithm operates in a coarse-to-fine manner
and achieves leading results in many object segmentation
benchmarks with low computational cost (about 10 seconds
for segmenting a 200x200 image with unoptimized MAT-
LAB code on a typical desktop).
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