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Abstract

Markov Random Field (MRF) is an important tool and
has been widely used in many vision tasks. Thus, the opti-
mization of MRFs is a problem of fundamental importance.
Recently, Veskler and Kumar et. al propose the range move
algorithms, which are one of the most successful solvers
to this problem. However, two problems have limited the
applicability of previous range move algorithms: 1) They
are limited in the types of energies they can handle (i.e. only
truncated convex functions); 2) These algorithms tend to be
very slow compared to other graph-cut based algorithms
(e.g. α-expansion and αβ-swap). In this paper, we propose
a generalized range swap algorithm (GRSA) for efficient
optimization of MRFs. To address the first problem, we
extend the GRSA to arbitrary semimetric energies by re-
stricting the chosen labels in each move so that the energy is
submodular on the chosen subset. Furthermore, to feasibly
choose the labels satisfying the submodular condition, we
provide a sufficient condition of the submodularity. For
the second problem, unlike previous range move algorithms
which execute the set of all possible range moves, we dy-
namically obtain the iterative moves by solving a set cover
problem, which greatly reduces the number of moves during
the optimization. Experiments show that the GRSA offers a
great speedup over previous range swap algorithms, while
it obtains competitive solutions.

1. Introduction

Markov Random Field (MRF) is an important tool and
has been widely used in many vision problems such as
stereo reconstruction [25], image restoration [5], segmen-
tation [3], image matching [21] and medical image analysis
[4]. Solving these problems refers to the maximum a pos-
teriori (MAP) estimation, or obtaining the label assignment
that minimizes the MRFs energy. Therefore, optimizing the

MRFs efficiently while ensuring good quality of solutions
is a problem of fundamental importance.

In the last decades, many kinds of optimization ap-
proaches have been developed, such as iterated condition-
al modes (ICM) [2], sequential belief propagation (BPS)
[25, 26], and sequential tree-reweighted message passing
(TRW-S) [14]. Recently, graph-cut based algorithms [5, 9–
11,16,17,28] have attracted significant attention due to their
good optimality properties. Boykov et al. [5] propose the
popular α-expansion and αβ-swap, both of which optimize
the MRFs by a series of iterative moves. In these two algo-
rithms, each move refers to solving the st-mincut problem
of a corresponding graph. Although α-expansion and αβ-
swap have been successfully applied in many vision tasks,
there is a main limitation which has greatly prevented the
algorithms from achieving a better solution. That is only
a choice of two labels is provided for the vertices in every
move [27]. Veksler [27, 28] effectively solves this problem
by developing the so-called range move algorithms, which
also decrease the energy by making a sequence of moves.
Different from α-expansion and αβ-swap, they allow every
vertex to have a choice of more than two labels, and this
brings about better solutions in practice. In [17,18], Kumar
et al. propose an improved range move algorithm and point
that the range move algorithm obtains the same guarantee
as the linear programming (LP) relaxation [6].

However, although the range move algorithms outper-
form α-expansion and αβ-swap in many cases, there are
two main problems which have limited their applicability in
practice: (i) they are limited in the types of energy functions
they can handle; (ii) the speed of the optimization is too
slow, and as a result, the range move algorithms are not
so popular as α-expansion and αβ-swap. For the former
limitation, previous range move algorithms [17, 18, 27, 28]
are restricted to only truncated convex functions. Howev-
er, there are many more general energy functions, which
have been successfully used in different vision problems,



such as piecewise linear function [13] and Geman-McClure
function [20]. Veksler in [28] points out that previous
range move algorithms can be extended to more general
energies by restricting the set of labels so that the energy
on the restricted subset is submodular. Unfortunately, it
is still a challenging problem to judge which labels satisfy
the submodular condition, while given an arbitrary energy
function. For the latter problem, previous range move algo-
rithms execute the set of all possible range moves, which
contain many repeated labels and lead to computational
inefficiency. As a result, the range move algorithms run
much slower than α-expansion and αβ-swap. In theory,
the larger the set of allowed moves, the better is the per-
formance. However, in practice, we find that almost the
same performance can be obtained with a much reduced set
of moves. Therefore, we raise the following questions: (i)
how to feasibly choose the labels satisfying the submodular
condition, while we are given an arbitrary energy function?
(ii) Whether we should execute all the possible moves, and
if not, which iterative moves are required? (iii) How to
schedule the moves to reduce the number of unnecessary
moves, while ensuring comparable solutions compared to
previous range move algorithms?

To solve the problems above, we propose a generalized
range swap algorithm (GRSA). Firstly, we extend the range
swap method to arbitrary semimetric1 functions by restrict-
ing the chosen labels in every move to be a submodular
set. More importantly, we provide a sufficient condition of
the submodularity to feasibly choose labels satisfying the
submodular condition. Secondly, we give the requirement
of iterative moves in the GRSA, that every vertex should
have the opportunity to swap its current label with any other
labels. This requirement guarantees the GRSA obtains at
least as good solutions as αβ-swap. Thirdly, to reduce the
running time of the GRSA, we dynamically obtain the series
of moves meeting the requirement by novelly solving a set
cover problem, which attempts to get the expected moves
covering all the pairs of labels. Experimental results show
that the GRSA greatly reduces the running time of range
swap moves (Figure 1), while obtains competitive solutions.

In our opinion, there are two main contributions in
this paper: (i) we break the limitation of previous range
move algorithms that they can only handle truncated convex
functions. What is more, we propose a method to choose
the submodular labels feasibly. This is a further research on
the submodular condition to make it practically applicable
in general functions. (ii) We novelly formulate the iterative
optimization as solving a set cover problem, and in return,
this formulation reduces a large number of unnecessary
moves and offers a great speedup over previous algorithms

1Here, “semimetric” means that the pairwise function should satisfy
θ(α, β) = 0 ⇔ α = β and θ(α, β) = θ(β, α) ≥ 0. If a function also
satisfy θ(α, β) ≤ θ(α, γ) + θ(γ, β), it is metric.

Figure 1. The running time of previous range swap algorithm and
the GRSA on MRFs with different sizes. The results are average
running time tested on 50 MRFs with truncated convex function.

without losing much in accuracy. Besides the main con-
tributions, the GRSA can be regarded as a generalization
of several graph cut based algorithms including αβ-swap,
range swap algorithm and the method of Ishikawa [11].
This provides a new view towards the relationship among
the graph-cut based algorithms. Meanwhile, the idea of the
GRSA can also be naturally extended to the range expan-
sion algorithms [17, 28], which can provide a theoretical
guarantee.

2. Background and related work
2.1. The preliminaries of MRF

Many vision problems can be naturally formulated in
terms of the maximum a posteriori (MAP) inference of an
MRF. The MRF is defined as an undirected graph G =
(P, E), where P is the set of vertices, and E is the set of
edges connecting neighboring vertices. Given an MRF, a
labeling f = {fp|p ∈ P} is the label assignment of all the
vertices p ∈ P . The probability of the labeling is given
by the Gibbs distribution: p(f |D) = exp(−E(f))/Z,
where D is the observed data and Z is the normalization
constant. The MAP estimation of the labeling can be solved
by minimizing the Gibbs energy, which is typically given as
follows:

E(f) =
∑
p∈P

θp(fp) +
∑

(p,q)∈E

θpq(fp, fq) (1)

where fp, fq ∈ L, and θp, θpq denote the unary and pairwise
potential respectively. The edge (p, q) ∈ E if and only if p,
q are neighboring vertices.

2.2. Graph cut based optimization

In recent years, graph cut has been a standard technique
for the optimization of MRFs. The GRSA is also based on
graph cut, and thus we give a brief review of the graph-cut
based algorithms in this section.

The primary idea of the graph-cut based algorithms is to
construct a special graph GC , where there is a one-to-one



correspondence between the cut of GC and the labeling f .
Meanwhile, the value of energyE(f) is exactly equal to the
cost of the cut of GC . Thus, the minimization of E(f) can
be obtained by solving the st-mincut problem. However,
the weight of edges in the st-mincut graph is required to
be non-negative, but not all the energy functions can be
ensured that such a corresponding graph can be exactly
constructed. As a result, most algorithms optimize E(f) by
a series of moves, each of which only considers a subset of
the labels. According to the number of considered labels in
each move, the graph-cut based algorithms can be divided
into three categories:

The α-expansion and αβ-swap algorithms Among the
graph-cut based algorithms, α-expansion and αβ-swap [5]
may be the most popular methods. Due to their good
optimality properties, both algorithms have been success-
fully applied in many vision tasks [12, 25], and there are a
large number of improved move making algorithms based
on them. For example, one class of the works [19, 20]
attempt to extend their application to arbitrary energies
using QPBO [15,22] to construct the graph, and other works
[1,8] attempt to improve the efficiency of the algorithms by
reducing the label space which will be searched over in each
move. However, all of these algorithms only provide every
vertex a choice of two labels in each move.

The range move algorithms To obtain better solutions
with the graph-cut techniques, Veksler [27, 28] and Kumar
et al. [17, 18] develop the range move algorithms for trun-
cated convex functions (e.g., θ(fp, fq)=min{|fp−fq|, T}).
The range move algorithms break the limitation of previous
move making algorithms in which only two labels are
considered in every move. In the range swap algorithms,
every move considers a consecutive label subset Lαβ =
{α, α+1, · · · , β} by restricting |α−β|=T . However, there
is a problem in the iterative moves of previous range swap
algorithms: they execute the set of all possible range moves,
and this leads to computational inefficiency. In contrast,
the GRSA does not suffer from the problem, since we give
the requirement to guarantee the solution quality, and obtain
the expected moves by solving a set cover problem, which
greatly reduces the number of moves in the iterations.

The case of global optimization Although the optimiza-
tion of MRFs is usually NP-hard, there are a few energy
functions whose exact solution can be obtained by consid-
ering all the labels in one st-mincut. Ishikawa [11] develops
an exact method for the optimization of multi-label MRFs.
However, the pairwise potential θpq is restricted to be
convex2. More generally, Schlesinger [23] points out that
all the energies with submodular pairwise functions can be
exactly minimized by the graph cut techniques. However,

2A function g(·) is convex if it satisfies g(x+1)−2g(x)+g(x−1)≥0
for any integer x. Note that convex is a special case of submodular.

neither the convex nor submodular function is so popularly
used in practice since they cannot preserve discontinuity
on boundaries [5]. Our GRSA is based on the graph
construction of [23]. However, rather than requiring the
energy function to be convex or submodular on the whole
label set, the GRSA only needs the chosen subsets in every
move to satisfy the submodular condition.

3. The algorithm

The GRSA starts from an initial labeling, and optimizes
E(f) by making a series of moves, each of which refers to a
st-mincut problem. The GRSA converges when there is no
move can be found to decreaseE(f). Firstly, we explain the
notions of the generalized range swap move in Section 3.1.
Every range swap move is executed on a subset of labels
satisfying the submodular condition, but it is a hard problem
to judge the labels satisfying the submodular condition. In
Section 3.2, we novelly propose a sufficient condition of the
submodularity, and show how to choose the labels flexibly
with this condition. In Section 3.3, we focus on solving the
problem of the iterative process in the GRSA. We first give
the requirement of the iterative moves, and then obtain the
series of moves by novelly solving a set cover problem.

3.1. The generalized range swap move

Let L = {0, · · · , n} be the label set, and Ls =
{l1, · · · , lm} (li < li+1) be a subset chosen from L. Note
that Ls is an arbitrary subset of L, and is not necessary to be
a consecutive sequence as previous algorithms [11, 17, 27].
Let Pl={p∈ P|fp= l} be the set of vertices assigned label
l, and PS = {p ∈ P|fp ∈ Ls} denote the set of vertices
whose labels belong to Ls. Then, a move from f to f ′

is called a range swap move (RSM) on Ls, if P ′

S = PS ,
and P ′

l = Pl for any label l /∈ Ls. In other words, a RSM
only allows the vertices belonging toPS to swap their labels
in Ls. Each range swap move refers to minimizing the
following energy:

Es(f)=
∑
p∈PS

θp(fp)+
∑

(p,q)∈E,{p,q}∩PS 6=∅

θpq(fp, fq). (2)

Naturally, we have E(f) = Es(f) + Eŝ(f), where

Eŝ(f)=
∑
p/∈PS

θp(fp)+
∑

(p,q)∈E,{p,q}∩PS=∅

θpq(fp, fq).

With the minimization of Es(f), the move effectively
decreases E(f), since the RSM on Ls will not change
the value of Eŝ(f). The RSM on Ls will lead to a
better solution, if there are more labels considered in Ls
(meanwhile, more vertices will be in PS ). However, Ls
cannot be chosen arbitrarily. It should satisfy the following
submodular condition [23] to guarantee the optimal RSM
can be obtained:



Definition 1. Given a pairwise potential θ(α, β), we call
Ls a submodular set, if it satisfies

θ(li+1,lj)−θ(li+1,lj+1)−θ(li,lj)+θ(li,lj+1) ≥ 0 (3)

for any pair of labels li, lj ∈ Ls(1≤ i, j<m).

The optimal RSM on a submodular set Ls can be
achieved with the graph construction of [11, 23].

3.2. Candidate submodular sets

Unfortunately, given an arbitrary energy, it is still a
challenging problem to obtain the submodular sets with
these inequalities (3). Therefore, we propose a sufficient
condition of the submodularity, which allows the labels sat-
isfying (3) to be chosen feasibly in practice. The sufficient
condition is given by the following theorem:

Theorem 1. Given a pairwise function θ(α, β) = g(x)
(x = |α − β|) on domain X = [0, c], assume there is an
interval3 Xs= [a, b] (0 ≤ a< b≤ c) satisfying: (i) g(x) is
locally convex on [a, b], and (ii) a · (g(a+1) − g(a)) ≥
g(a) − g(0). Then Ls = {l1, · · · , lm} is a submodular
subset, if |li − lj |∈ [a, b] for any pair of labels li, lj ∈Ls.

Proof. The proofs of the theorem and corollary presented in
this paper are available in the supplementary material.

In the follows, we focus on explaining the above theo-
rem. For brevity, we call the interval Xs satisfying the con-
ditions in Theorem 1 a candidate interval. It is obviously
that any convex interval [0, b] is a candidate interval, since
a · (g(a+1)− g(a)) = g(a)− g(0) when a = 0.

General energy functions For most functions success-
fully applied in vision problems, they are usually neither
convex functions nor concave functions, such as truncated
convex functions and piecewise functions. Although these
functions are neither convex nor submodular on the whole
domain, there are usually some convex candidate intervals.
Theorem 1 implies that the submodular label subsets Ls
can be obtained by restricting the difference between each
pair of labels belonging to the same candidate interval. To
explain this clearly, we use the example of piecewise linear
function as shown in Figure 2. There are two candidate
intervals: [0, 3] and [5, 12] in this pairwise function. As
previous range move algorithms [27] [28], we can obtain
the series of submodular sets {α, α+1, α+2, α+3} where
0 ≤ α ≤ n− 3 with the first candidate interval [0, 3].
Meanwhile, it can be seen that the subsets {α, α+2, α+3}
or {α, α+1, α+3} are also submodular sets, since |li− lj | ∈
[0, 3] for any pair of labels. Furthermore, we can also obtain
the submodular sets: {α, α+5, α+10}, {α, α+6, α+11},· · ·
with the second candidate interval [5, 12]. More generally,

3Here, the interval [a, b] denotes the set of integers {x|a≤x≤b}.

Figure 2. An example of piecewise linear function g(x). The
function is locally convex on the intervals [0, 3] and [5, 12]. Here,
we assume that the function satisfies that g(6)−g(5)

6−5
≥ g(5)−g(0)

5−0
.

Thus, both [0, 3] and [5, 12] are candidate intervals, and the
submodular sets can be obtained on these two candidate intervals.

we give the following corollary which is equivalent to
Theorem 1:
Corollary 1 (Thereom 1). Assuming the interval [a, b] is a
candidate interval, then {α, α+ x1, α+ x1 + x2, · · · , α+
x1 + · · · + xm} ⊆ L is a submodular set for any α ≥ 0, if
x1, · · · , xm ∈ [a, b] and x1 + · · ·+ xm≤b.

Concave functions If the pairwise function is a concave
function (e.g., g(x) =

√
x), there is no convex interval can

be found. Meanwhile, it can be easily proved that there is
no submodular set that contains more than two labels. In
this case, there are only two labels that can be considered in
every move. Therefore, the GRSA is equivalent to αβ swap
algorithm, when the energy function is concave.

Convex functions If the pairwise function is a convex
function (e.g., g(x) = x), the domain [0, n], where n is
the number of labels, is a candidate interval. Therefore,
the whole label set L is a submodular set. The optimal
solution can be achieved in one move, and thus the GRSA
is equivalent to the global method of Ishikawa [11] in this
case.

Thus, we can obtain a series of candidate submodular
sets with the above method while given an arbitrary semi-
metric functions. The range swap move executed on any of
these submodular sets can be exactly solved by computing
the st-mincut problem.

3.3. The iterative optimization

Before proposing the process of iterative optimization in
the GRSA, we firstly review the iterative process in αβ-
swap and previous range swap algorithms, and then give
the requirement of the moves to ensure the solution quality
of the GRSA.

αβ-swap and previous range swap In αβ-swap, the
requirement of the swap moves is that any pair of labels
should be visited in each cycle4 of iterations. This is

4In αβ-swap, we call these iteration moves considering all the pairs
of labels once as a “cycle”, and αβ-swap usually takes several cycles to
converge [5].



necessary since it guarantees that every vertex has a chance
to swap its current label fp with any other labels in L.

In previous range swap algorithms, the moves are exe-
cuted on all the subsets Lαβ = {α, α + 1, · · · , β}, where
|α − β| = T , and T is the truncated factor in a truncate
convex function (e.g. θ = min{|fp − fq|, T}). However,
there are many repeated labels in these moves. For example,
in the two moves {α, α + 1, · · · , β} and {α + 1, α +
2, · · · , β + 1}, most of the labels (i.e. {α + 1, · · · , β}) are
repeated. Thus, these moves cost much time, and cannot
efficiently decrease E(f). This is why previous range swap
algorithms run much slower than αβ-swap.

The GRSA As the method described in Section 3.2, given
an arbitrary energy function, we usually can obtain a large
number of submodular sets, each of which corresponds
to one possible range swap move. However, it is time-
consuming and unnecessary to perform the exhaustive set
of range moves. In practice, we find the requirement is
sufficient to ensure the quality of solutions that any pair
of labels should be simultaneously considered once in one
cycle of iterative moves, i.e., every vertex should have
chance to swap its current label with any other labels. It
is the same as the requirement of αβ-swap, and in theory,
the range swap moves meeting this requirement can be
guaranteed to obtain at least as good solutions as αβ-swap.

The following problem is how to choose a series of
moves (i.e., submodular sets) in one cycle, such that (i)
these submodular sets cover all pairs of labels; (ii) the
submodular set containing more labels should be chosen
preferentially, and (iii) there should be as less repeated
labels as possible in these submodular sets to reduce the
running time. Naturally, this problem can be formulated as
a set cover problem (SCP) [7].

In a SCP, we are usually given an universe U of m
elements, a collection of set S = {S1, ..., Sk} where Si ⊆
U , and a cost function c : S → R. A set cover is a
subcollection of the sets in S, that covers all the element
in U . Then, the objective of the set cover problem is to find
a cover S ′ ⊆ S which minimizes the costs.

In the GRSA, L = {0, · · · , n} is the set of labels, and
let {L1,L2, · · · ,Lk} be the series of submodular sets. We
define C(L) = {(0, 1), (0, 2), · · · , (n−1, n)} to be the set
containing all the pairs of labels in L. In the set cover
formulation, the universe U = C(L), and the collection of
set Si = C(Li). Therefore, the moves can be obtained by
solving the following set cover problem:

min
∑
Si∈S′

c(Si) s.t.
⋃
Si∈S′

Si = U . (4)

Although the SCP is an NP hard problem, fortunate-
ly, the greedy algorithm [24] can successfully achieve an
approximate solution in polynomial time. Algorithm 1
describes the iterative process of the GRSA, where the

Algorithm 1 The Generalized Range Swap Algorithm
Input:

1: The label set L = {0, · · · , n}, and the pairwise function
θ(α, β) = g(x) (x = |α− β|).

Initialization:
2: Find the series of submodular sets Li with the total enumera-

tion according to Corollary 1.
3: Get the collection of sets S = {S1, ..., Sk} where Si =
C(Li), and initialize U = C(L), Sc ← ∅.

4: Initialize the labeling f .
Iteration:

5: repeat
6: while Sc 6= U do
7: Choose Si ∈ S, which minimizes the cost per element

c(Si)
|Sc∪Si|−|Sc| .

8: Set Sc := Si ∪ Sc and Ls := Li where Si = C(Li).
9: Get the new labeling f ′ = argminE(f) within the

range swap move on Ls.
10: If E(f ′) < E(f), set f := f ′.
11: end while
12: until No moves can be found to decrease E(f).
Output:
13: Return the labeling f .

moves are chosen by dynamically solving the SCP with the
greedy algorithm. In the algorithm, step 6-11 is a cycle of
iterative moves, and each move in step 7 chooses the set:

Si = argmin
Si∈S

c(Si)

|Sc ∪ Si| − |Sc|
(5)

where Sc denotes the set of elements which have been
chosen in the greedy algorithm. |Sc ∪Si| − |Sc| denotes
the number of increased elements when set Si is added into
Sc. This means the greedy algorithm always chooses the set
which minimizes the cost of per increased element.

Using the SCP, we can design different iterative process-
es by assigning different cost to the submodular sets. In this
paper, we set5 : c(Si) = 1, if Si ∩ Sc = ∅;∞, otherwise.

This means that every iterative move in step 7 chooses
the set: (i) there is no repeated element with the collections
which have been chosen in previous moves; (ii) it con-
tains maximal number of labels among the sets satisfying
condition (i). For an example of the truncated convex
function whose truncated factor is T , the GRSA is possible
to execute the moves on the following series of submodular
sets: {0, · · · , T}, {T, · · · , 2T},· · · ,{mT, · · · , n} and all
the pair of labels which are missing.

5 We just set the cost function described in the paper for simplicity,
but a better iterative process may be developed with other design of cost
(e.g. set c(Si) = 1 + |Si|), since a small number of repeated labels may
lead to a better solution without increase of running time. However, the
experiments show that the GRSA obtain promising results without a fine
design of the SCP.



4. Experiments
In this section, we evaluate our GRSA on both synthetic

data and real vision applications of image restoration and
stereo matching. The performance is compared with some
state-of-the-art methods, including α-expansion, αβ-swap,
BPS [26], TRWS [14], as well as previous range swap
and range swap + t algorithm6. To ensure the fairness of
comparisons, the GRSA and all the other algorithms are
initialized with the same labeling (every vertex is initialized
label 0). The iterative moves of the GRSA are performed
as Algorithm 3.3. In the experiment, we use the codes
provided by Kumar et.al [18] for previous range swap and
range swap + t algorithms. On the experiments of image
restoration, we perform “all swap moves” plus “all range
swap moves” in the iterative moves of previous range swap
and range swap + t algorithms. This is because that some
important moves are missing in previous range swap moves,
i.e., the pairs of labels {α, β} are not considered for any
pair of labels α, β satisfying |α−β|> T 7. For a vertex p,
whose current label is α and real label is β (|α−β| > T ),
unfortunately there is no move from α to β. This may lead
to a bad solution especially when the label space is large
(e.g. |L| = 256 in image restoration).

4.1. Data and experimental setting

Synthetic data The computation time of previous range
swap and the GRSA is affected by multiple factors, such
as the parameters of energy function or the size of MRF.
To give a comparison of our GRSA and previous range
swap algorithm under various cases, we evaluate them on
the MRFs whose parameters are generated randomly. Fol-
lowing [17,18], the data term θp(fp) are sampled uniformly
from the interval [0, 10]. For the pairwise term, we use the
truncated convex function θpq =3min{(fp−fq)2, T 2}. In
the experiments, we firstly fix T = 5, and test the running
time of the algorithms with the increase of MRFs’ size.
Then, we fix the size of the MRFs as 100×100, and evaluate
the influence of the truncated factor T . In each group,
we use 50 random fields to avoid errors, and compare the
average running time and average energy.

Image restoration In image restoration, the given input
images are corrupted with noise and the objective is to re-
construct the original images by removing the noise. We use
two popular images from the Corel database: penguin and
house. In the experiments, we set L={0, 1, · · · , 255}, and
test the GRSA on two pairwise functions: 1) the truncated
convex function θpq(fp, fq) = 25min{(fp − fq)2, 200},
whose parameters are set as [12, 28]; and 2) the piecewise

6In every move, the range swap + t algorithm [27] considers the label
set {α−t, α−t+1, · · · , β+t}, where |β − α| = T to obtain a better
solution. We set t = 2 in all the experiments.

7T is the truncated factor in a truncate convex function

linear function:

θpq(fp, fq) =

 25|fp−fq|, if |fp−fq|≤15;
25× 15, if 15< |fp−fq|<45;
25(|fp−fq|−35), if 45≤|fp−fq|.

Stereo matching In stereo correspondence, the goal is to
get the correspondence of pixels in the left and right images.
In the experiment, we use two popular image pairs tsukuba
and venus from the Middlebury Stereo Database. The size
of label space is equal to the number of disparity on the
image pairs: tsukuba (16), venus (20). We use two kinds
of energy functions: the truncated function θpq(fp, fq) =
30min{(fp−fq)2, T 2} and the pairwise linear function

θpq(fp, fq) =

{
30|fp−fq|, if |fp−fq|<T ;
|fp−fq|+30T, otherwise.

We set T = 8 for tsukuba, and T = 10 for venus. We
also evaluate the accuracy of results on Middlebury On-line
Evaluation8 with two different error thresholds (ET).

4.2. Performance comparison and analysis

Comparison with traditional range swap algorithms
Efficiency: To quantify the efficiency of the GRSA, we

compare the running time of the GRSA and previous range
swap algorithm on truncated convex functions. To avoid
the influence of implementation details, we use the code9

provided by Kumar et al. [17] for previous range swap
algorithm. Figure 3 shows the running time of the algo-
rithms on synthetic data with different influential factors.
We can observe that the running time of previous range
swap greatly increases with the MRFs’ size or truncated
factor. In contrast, the running time of the GRSA increases
much slower than previous range swap, and it reduces the
running time of previous range swap by more than 80% in
many cases (e.g. T =8, size 100×100). In real problems,
the GRSA also runs much faster. As shown in Figure 4
(b) and (e) and Table 1, we can see that the GRSA runs
at least 3-6 times faster than previous range swap, and 5-
14 times faster than range swap + t algorithm in image
restoration. The GRSA shows high efficiency because
the set cover formulation greatly reduces the number of
unnecessary moves, and thus the GRSA takes much less
time in each cycle of iterations. As shown in Figure 3 (d),
Figure 4 (d) and (g), we can see that the GRSA takes similar
number of cycles to converge, but runs several times faster
in each cycle compared to previous range swap algorithms.

Performance: We quantify the performance of the GRSA
and previous range swap algorithms on image restoration
and stereo matching. In stereo matching, the range swap + t
algorithm obtains the best results among the compared

8http://vision.middlebury.edu/stereo/eval/
9http://cvn.ecp.fr/personnel/pawan/research/truncated-moves.html



Figure 3. The results obtained on synthetic data. Each group of result is evaluated on 50 MRFs with truncated convex functions. (a) and
(b) show the algorithms’ running time with different sizes of MRFs or different truncated factors T . (c) shows the energy with different
truncated factors T (size 100×100). (d) shows the number of cycles and the running time of each cycle when T =8, size is 100×100.

Figure 4. The results obtained on image restoration. (a) shows the results obtained by range swap [17], range swap + t and the GRSA
on penguin. (b) and (e) show the energy obtained by different algorithms with running time on penguin and house respectively. (c) and
(f) show the obtained energy with the number of cycles on penguin and house respectively. The value of energy is plotted in percentage
points, where 100% is set to be the lowest value achieved by any algorithm in (b), (c), (e) and (f). (d) and (g) show the running time taken
by every cycle of iterations in different algorithms, and the number of cycles that each algorithm takes to converge.

algorithms (Table 2). Meanwhile, previous range swap and
the GRSA get promising and similar results. In image
restoration, the range swap + t algorithm (“all swap moves”
plus “all range swap + t moves”) obtains the best results.
However, we can see that the GRSA obtains very similar
solutions compared to both the range swap + t and range
swap algorithms as shown in Figure 4.

Therefore, the GRSA offers a great speedup over pre-
vious range swap algorithms, while achieves competitive
solutions without losing much in accuracy on both synthetic
data and real problems.

Comparison with αβ-swap algorithms We compare the
GRSA with αβ-swap on both synthetic data and real prob-
lems. As expected, the GRSA outperforms αβ-swap on
both synthetic data and the real problems of image restora-

Algorithm Energy Time Energy Time
(penguin) (penguin) (house) (house)

αβ-swap 17367822 512.4 45114530 1789.8
Range swap 15740426 1448.7 41438765 7536.5

Range swap+t 15716390 2258.0 41332881 15753.3
Our GRSA 15758765 392.0 41452670 1278.7

αβ-swap 9395637 221.0 26648428 453.5
Our GRSA 8675869 149.3 23827954 371.1

Table 1. The results on image restoration. The optimization
algorithms are evaluated on two images. The 2-3 columns show
the energy and running time on image penguin, respectively. The
4-5 columns show the results on image house. The 2-7 rows show
the results on the truncated convex function, and 8-9 rows show
the results on the piecewise linear function.

tion and stereo matching, because the GRSA considers
more labels in every move. The GRSA achieves not only



Figure 5. The stereo matching results obtained by α-expansion, αβ-swap, TRW-S and the GRSA with the truncated convex function. The
errors (%) are tested on Middlebury Stereo Evaluation. Error1 is tested with the error thresholdET = 1, and error2 is tested withET = 2.

a lower energy but also a better accuracy compared to αβ-
swap. For example, as shown in Figure 5, the error of the
results obtained by αβ-swap on tsukuba is 10.3 (ET = 2),
while the error of the GRSA is 4.5.

In the experiments, we find that the GRSA takes similar
time to converge compared to αβ-swap in most cases, e.g.
in synthetic data and stereo matching. However, in image
restoration, the GRSA surprisingly converges faster than
αβ-swap with both the truncated convex and piecewise
linear functions. This is because that although the GRSA
takes more time in each cycles of iterations, it needs much
fewer cycles to converge as shown in Figure 4) (d) and (g).
For example, the GRSA takes 21 cycles while αβ-swap
takes 55 cycles to converge in image penguin. In Figure 4
(c) and (f), we can also see that each cycle of the GRSA
decreases E(f) much more than αβ-swap does.

Comparison with other state-of-the-art algorithms In
stereo matching, we also compare the performance of the
GRSA with α-expansion, BPS and TRW-S, all of which
have been successfully applied in many applications. Ta-
ble 2 shows the performance obtained with both truncated
convex functions and piecewise linear functions. We can
see that the range swap + t algorithm obtains the best results
on truncated convex functions. The GRSA, range swap
algorithm and TRW-S also get competitive results. With
the piecewise linear functions, the GRSA obtains the best
results compared to α-expansion, αβ-swap, BPS and TRW-
S. Besides the energy, the GRSA also gets competitive
results in terms of accuracy. Figure 5 shows the solutions
obtain by α-expansion, αβ-swap, TRW-S and the GRSA.
It can be seen that the GRSA gives the best results among
these algorithms.

5. Conclusions and discussions
In this paper, we have presented a generalized range

swap algorithm for the approximate optimization of MRFs
with any semimetric energy functions. The algorithm
considers a submodular set in every move, and to choose
the submodular labels feasibly, we have proposed a suf-
ficient condition of the submodularity. In the iterative
optimization, we dynamically obtain the range swap moves

Algorithm Energy 1 Energy 2 Energy 1 Energy 2
(Tsukuba) (Tsukuba) (Venus) (Venus)

α-expansion 1482258 1369101 2712361 2611608
αβ-swap 2189043 1371721 2922213 2952128

Range swap 1449334 - 2629676 -
Range swap+t 1431401 - 2629664 -

TRW-S 1449548 1371572 2630498 2603053
BPS 1686577 1460496 3299917 2633931

Our GRSA 1445585 1367681 2630819 2600259

Table 2. The results on stereo matching. “Energy 1” denotes the
energies obtained on the truncated convex function, while “Energy
2” denotes the energies obtained on the piecewise linear function.

by solving a set cover problem (SCP). The SCP gets the
moves covering all the pairs of labels in L, while reduces
many unnecessary moves. The experiments show that
the GRSA runs several times faster than previous range
swap algorithms, while it achieves competitive solutions.
Moreover, the GRSA can be regarded as a generalization
of αβ-swap, previous range swap algorithms and the global
optimization of Ishikawa.

In future work, the GRSA still can be improved in some
aspects. First, we designed a simple cost function in the set
cover problem, and we believe that more powerful iterative
methods can be developed with the SCP by designing a
better cost function. Second, although Theorem 1 provides
a practical method to obtain the submodular sets, however
it is not a necessary condition. It is an interesting problem
whether we can find a better way to allow more labels to
be feasibly taken in submodular sets. Third, we observe
that there are still many moves that do not efficiently lower
E(f) in the iterations of the GRSA. Therefore, it will be
an interesting direction to find the move which leads to the
biggest decrease of E(f) in each iteration as [1], and this
may greatly reduce the running time of the GRSA.
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