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Abstract

This paper starts from the observation that multiple top
performing pedestrian detectors can be modelled by using
an intermediate layer filtering low-level features in combin-
ation with a boosted decision forest. Based on this observa-
tion we propose a unifying framework and experimentally
explore different filter families. We report extensive results
enabling a systematic analysis.

Using filtered channel features we obtain top perform-
ance on the challenging Caltech and KITTI datasets, while
using only HOG+LUV as low-level features. When adding
optical flow features we further improve detection quality
and report the best known results on the Caltech dataset,
reaching 93% recall at 1 FPPI.

1. Introduction
Pedestrian detection is an active research area, with

1000+ papers published in the last decade1, and well estab-
lished benchmark datasets [9, 13]. It is considered a canon-
ical case of object detection, and has served as playground
to explore ideas that might be effective for generic object
detection.

Although many different ideas have been explored, and
detection quality has been steadily improving [2], arguably
it is still unclear what are the key ingredients for good ped-
estrian detection; e.g. it remains unclear how effective parts,
components, and features learning are for this task.

Current top performing pedestrian detection methods all
point to an intermediate layer (such as max-pooling or fil-
tering) between the low-level feature maps and the classi-
fication layer [42, 45, 29, 25]. In this paper we explore
the simplest of such intermediary: a linear transformation
implemented as convolution with a filter bank. We pro-
pose a framework for filtered channel features (see figure 1)
that unifies multiple top performing methods [8, 1, 45, 25],
and that enables a systematic exploration of different filter
banks. Our experiments show that, with the proper filter
bank, filtered channel features reach top detection quality.

1Papers from 2004 to 2014 with "pedestrian detection" in the title, ac-
cording to Google Scholar.

Figure 1: Filtered feature channels illustration, for a single
weak classifier reading over a single feature channel.
Integral channel features detectors pool features via sums
over rectangular regions [8, 1]. We can equivalently re-
write this operation as convolution with a filter bank fol-
lowed by single pixel reads (see §2). We aim to answer:
What is the effect of selecting different filter banks?

It has been shown that using extra information at test
time (such as context, stereo images, optical flow, etc.) can
boost detection quality. In this paper we focus on the “core”
sliding window algorithm using solely HOG+LUV features
(i.e. oriented gradient magnitude and colour features). We
consider context information and optical flow as add-ons,
included in the experiments section for the sake of com-
pleteness and comparison with existing methods. Using
only HOG+LUV features we already reach top perform-
ance on the challenging Caltech and KITTI datasets, match-
ing results using optical flow and significantly more features
(such as LBP and covariance [42, 29]).

1.1. Related work

Recent survey papers discuss the diverse set of ideas ex-
plored for pedestrian detection [10, 14, 9, 2]. The most
recent survey [2] indicates that the classifier choice (e.g.
linear/non-linear SVM versus decision forest) is not a clear
differentiator regarding quality; rather the features used
seem more important.

Creativity regarding different types of features has not
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been lacking. HOG) The classic HOG descriptor is based
on local image differences (plus pooling and normaliza-
tion steps), and has been used directly [5], as input for a
deformable parts model [11], or as features to be boosted
[20, 26]. The integral channel features detector [8, 1] uses
a simpler HOG variant with sum pooling and no normaliz-
ations. Many extensions of HOG have been proposed (e.g.
[17, 11, 6, 34]). LBP) Instead of using the magnitude of
local pixel differences, LBP uses the difference sign only
as signal [41, 42, 29]. Colour) Although the appearance
of pedestrians is diverse, the background and skin areas do
exhibit a colour bias. Colour has shown to be an effective
feature for pedestrian detection and hence multiple colour
spaces have been explored (both hand-crafted and learned)
[8, 18, 19, 23]. Local structure) Instead of simple pixel
values, some approaches try to encode a larger local struc-
ture based on colour similarities (soft-cue) [40, 15], seg-
mentation methods (hard-decision) [27, 32, 36], or by es-
timating local boundaries [21]. Covariance) Another pop-
ular way to encode richer information is to compute the co-
variance amongst features (commonly colour, gradient, and
oriented gradient) [38, 29]. Etc.) Other features include
bag-of-words over colour, HOG, or LBP features [4]; learn-
ing sparse dictionary encoders [33]; and training features
via a convolutional neural network [35] ( [37, 16] appeared
while preparing this manuscript). Additional features spe-
cific for stereo depth or optical flow have been proposed,
however we consider these beyond the focus of this paper.
For our flow experiments we will use difference of frames
from weakly stabilized videos (SDt) [30].

All the feature types listed above can be used in the integ-
ral channel features detector framework [8]. This family of
detectors is an extension of the old ideas from Viola&Jones
[39]. Sums of rectangular regions are used as input to de-
cision trees trained via Adaboost. Both the regions to pool
from and the thresholds in the decision trees are selected
during training. The crucial difference from the pioneer
work [39] is that the sums are done over feature channels
other than simple image luminance.

Current top performing pedestrian detection methods
(dominating INRIA [5], Caltech [9] and KITTI data-
sets [13]) are all extensions of the basic integral chan-
nel features detector (named ChnFtrs in [8], which
uses only HOG+LUV features). SquaresChnFtrs [2],
InformedHaar [45], and LDCF [25], are discussed in de-
tail in section 2.2. Katamari exploits context and optical
flow for improved performance. SpatialPooling(+)
[29] adds max-pooling on top of sum-pooling, and uses
additional features such as covariance, LBP, and optical
flow. Similarly, Regionlets [42] also uses extended fea-
tures and max-pooling, together with stronger weak clas-
sifiers and training a cascade of classifiers. Out of these,
Regionlets is the only method that has also shown

good performance on general classes datasets such as Pascal
VOC and ImageNet.

In this paper we will show that vanilla HOG+LUV fea-
tures have not yet saturated, and that, when properly used,
they can reach top performance for pedestrian detection.

1.2. Contributions
• We point out the link between ACF [7],
(Squares)ChnFtrs [8, 1, 2], InformedHaar
[45], and LDCF [25]. See section 2.
• We provide extensive experiments to enable a system-

atic analysis of the filtered integral channels, covering
aspects not explored by related work. We report the
summary of 65+ trained models ( ∼10 days of single
machine computation). See sections 4, 5 and 7.
• We show that top detection performance can be

reached on Caltech and KITTI using HOG+LUV fea-
tures only. We additionally report the best known res-
ults on Caltech. See section 7.

2. Filtered channel features
Before entering the experimental section, let us describe

our general architecture. Methods such as ChnFtrs [8],
SquaresChnFtrs [1, 2] and ACF [7] all use the basic
architecture depicted in figure 1 (top part, best viewed in
colours). The input image is transformed into a set of fea-
ture channels (also called feature maps), the feature vector
is constructed by sum-pooling over a (large) set of rectangu-
lar regions. This feature vector is fed into a decision forest
learned via Adaboost. The split nodes in the trees are a
simple comparison between a feature value and a learned
threshold. Commonly only a subset of the feature vector
is used by the learned decision forest. Adaboost serves
both for feature selection and for learning the thresholds in
the split nodes. For more details on this basic architecture,
please consult [8, 1].

A key observation, illustrated in figure 1 (bottom), is that
such sum-pooling can be re-written as convolution with a
filter bank (one filter per rectangular shape) followed by
reading a single value of the convolution’s response map.
This “filter + pick” view generalizes the integral channel
features [8] detectors by allowing to use any filter bank (in-
stead of only rectangular shapes). We name this generaliz-
ation “filtered channel features detectors”.

In our framework, ACF [7] has a single filter in its
bank, corresponding to a uniform 4×4 pixels pooling re-
gion. ChnFtrs [8] was a very large (tens of thou-
sands) filter bank comprised of random rectangular shapes.
SquaresChnFtrs [1, 2], on the other hand, has only
16 filters, each with a square-shaped uniform pooling re-
gion of different sizes. See figure 2a for an illustration of
the SquaresChnFtrs filters, the upper-left filter corres-
ponds to ACF’s one.



The InformedHaar [45] method can also be seen as
a filtered channel features detector, where the filter bank
(and read locations) are based on a human shape template
(thus the “informed” naming). LDCF [25] is also a particu-
lar instance of this framework, where the filter bank consists
of PCA bases of patches from the training dataset. In sec-
tions 4 and 5 we provide experiments revisiting some of the
design decisions of these methods.

Note that all the methods mentioned above (and in
the majority of experiments below) use only HOG+LUV
feature channels2 (10 channels total). Using linear fil-
ters and decision trees on top of these does not allow
to reconstruct the decision functions obtained when using
LBP or covariance features (used by [42, 29]). Compared
to SpatialPooling [29] and Regionlets [42] the
main differences are that we use simpler features, do pool-
ing only via filtering (instead of mixed mean and max-
pooling), use simpler weak classifiers (short decision trees),
and vanilla discrete Adaboost. We consider the approach
considered here mainly orthogonal to the ideas in [42, 29].

2.1. Evaluation protocol

For our experiments we use the Caltech [9, 2] and KITTI
datasets [13]. The popular INRIA dataset is considered too
small and too close to saturation to provide interesting res-
ults. All Caltech results are evaluated using the provided
toolbox, and summarised by log-average miss-rate (MR,
lower is better) in the

[
10−2, 100

]
FPPI range for the “reas-

onable” setup. KITTI results are evaluated via the online
evaluation portal, and summarised as average precision (AP,
higher is better) for the “moderate” setup.

Caltech10x The raw Caltech dataset consists of videos
(acquired at 30 Hz) with every frame annotated. The stand-
ard training and evaluation considers one out of each 30
frames (1 631 pedestrians over 4 250 frames in training,
1 014 pedestrians over 4 024 frames in testing).
In our experiments of section 5 we will also consider a 10×
increased training set where every 3rd frame is used (linear
growth in pedestrians and images). We name this extended
training set “Caltech10x”. LDCF [25] uses a similar exten-
ded set for training its model (every 4th frame).

Flow Methods using optical flow do not only use addi-
tional neighbour frames during training (1 ↔ 4 depending
on the method), but they also do so at test time. Because
they have access to additional information at test time, we
consider them as a separate group in our results section.

Validation set In order to explore the design space of our
pedestrian detector we setup a Caltech validation set by
splitting the six training videos into five for training and
one for testing (one of the splits suggested in [9]). Most of

2We use “raw” HOG, without any clamping, cell normalization, block
normalization, or dimensionality reduction.

our experiments use this validation setup. We also report (a
posteriori) our key results on the standard test set for com-
parison to the state of the art.
For the KITTI experiments we also validate some design
choices (such as search range and number of scales) before
submission on the evaluation server. There we use a 2/3+1/3
validation setup.

2.2. Baselines

ACF Our experiments are based on the open source re-
lease of ACF [7]. Our first baseline is vanilla ACF re-trained
on the standard Caltech set (not Caltech10x), all parameter
details are described in section 2.3, and kept identical across
experiments unless explicitly stated. On the Caltech test set
it obtains 32.6% MR (50.2% MR on validation set). Note
that this baseline already improves over more than 50 pre-
viously published methods [2] on this dataset. There is also
a large gap between ACF-Ours (32.6% MR) and the ori-
ginal number from ACF-Caltech (44.2% MR [7]). This
improvement is mainly due to the change towards a larger
model size (from 32×64 pixels in [7] to 60×120 here).

InformedHaar Our second baseline is a re-
implementation of InformedHaar [45]. Here again
we observe an important gain from using a larger model
size (same change as for ACF). While the original
InformedHaar paper reports 34.6% MR, Informed-
Haar-Ours reaches 27.0% MR on the Caltech test set
(39.3% MR on validation set).

For both our baselines we use exactly the same train-
ing set as the original papers. Note that the Informed-
Haar-Ours baseline (27.0% MR) is right away the best
known result for a method trained on the standard Cal-
tech training set. In section 3 we will discuss our re-
implementation of LDCF [25].

2.3. Model parameters

Unless otherwise specified we train all our models using
the following parameters. Feature channels are HOG+LUV
only. The final classifier includes 4096 level-2 decision
trees (L2, 3 stumps per tree), trained via vanilla discrete
Adaboost. Each tree is built by doing exhaustive greedy
search for each node (no randomization). The model has
size 60×120 pixels, and is built via four rounds of hard
negative mining (starting from a model with 32 trees, and
then 512, 1024, 2048, 4096 trees). Each round adds 10 000
additional negatives to the training set. The sliding window
stride is 6 pixels (both during hard negative mining and at
test time).

Compared to the default ACF parameters, we use a big-
ger model, more trees, more negative samples, and more
boosting rounds. But we do use the same code-base and the
same training set.



(a) SquaresChntrs filters (b) Checkerboards filters

(c) RandomFilters (d) InformedFilters

(e) LDCF8 filters (f) PcaForeground filters

Figure 2: Illustration of the different filter banks considered.
Except for SquaresChntrs filters, only a random subset
of the full filter bank is shown. {� Red, � White, � Green}
indicate {−1, 0, +1}.

Starting from section 5 we will consider results using
Caltech10x. There, better performance is reached when
using level-4 decision trees (L4), and Realboost [12] in-
stead of discrete Adaboost. All other parameters are left
unchanged.

3. Filter bank families
Given the general architecture and the baselines de-

scribed in section 2, we now proceed to explore different
types of filter banks. Some of them are designed using prior
knowledge and they do not change when applied across
datasets, others exploit data-driven techniques for learning
their filters. Sections 4 and 5 will compare their detection
quality.
InformedFilters Starting from the Informed-
Haar [45] baseline we use the same “informed” filters but
let free the positions where they are applied (instead of fixed

in InformedHaar); these are selected during the boost-
ing learning. Our initial experiments show that removing
the position constraint has a small (positive) effect. Ad-
ditionally we observe that the original InformedHaar
filters do not include simple square pooling regions (à la
SquaresChnFtrs), we thus add these too. We end up
with 212 filters in total, to be applied over each of the 10 fea-
ture channels. This is equivalent to training decision trees
over 2120 (non filtered) channel features.
As illustrated in figure 2d the InformedFilters have
different sizes, from 1×1 to 4×3 cells (1 cell = 6×
6 pixels), and each cell takes a value in {−1, 0, +1}. These
filters are applied with a step size of 6 pixels. For a model
of 60×120 pixels this results in 200 features per channel,
2 120 · 200 = 424 000 features in total3. In practice con-
sidering border effects (large filters are not applied on the
border of the model to avoid reading outside it) we end up
with ∼300 000 features. When training 4 096 level-2 de-
cision trees, at most 4 096 · 3 = 12 288 features will be
used, that is ∼3% of the total. In this scenario (and all oth-
ers considered in this paper) Adaboost has a strong role of
feature selection.

Checkerboards As seen in section 2.2
InformedHaar is a strong baseline. It is however unclear
how much the “informed” design of the filters is effective
compared to other possible choices. Checkerboards is
a naïve set of filters that covers the same sizes (in number
of cells) as InformedHaar/InformedFilters and
for each size defines (see figure 2b): a uniform square, all
horizontal and vertical gradient detectors (±1 values), and
all possible checkerboard patterns. These configurations
are comparable to InformedFilters but do not use the
human shape as prior.
The total number of filters is a direct function of the
maximum size selected. For up to 4×4 cells we end up
with 61 filters, up to 4×3 cells 39 filters, up to 3×3 cells 25
filters, and up to 2×2 cells 7 filters.

RandomFilters Our next step towards removing a
hand-crafted design is simply using random filters (see fig-
ure 2c). Given a desired number of filters and a maximum
filter size (in cells), we sample the filter size with uniform
distribution, and set its cell values to±1 with uniform prob-
ability. We also experimented with values {−1, 0, +1} and
observed a (small) quality decrease compared to the binary
option).

The design of the filters considered above completely ig-
nores the available training data. In the following, we con-
sider additional filters learned from data.

3“Feature channel” refers to the output of the first transformation in
figure 1 bottom. “Filters” are the convolutional operators applied to the
feature channels. And “features” are entries in the response maps of all
filters applied over all channels. A subset of these features are the input to
the learned decision forest.
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Detection quality on Caltech validation set

InformedHaar-Ours
RandomFilters@15/50
RandomFilters
Checkerboards
InformedFilters
Inf.FiltersPerChannel
LDCF
PcaForeground

Figure 3: Detection quality (log-average miss-rate MR,
lower is better) versus number of filters used. All models
trained and tested on the Caltech validation set (see §4).

LDCF [25] The work on PCANet [3] showed that apply-
ing arbitrary non-linearities on top of PCA projections of
image patches can be surprisingly effective for image clas-
sification. Following this intuition LDCF [25] uses learned
PCA eigenvectors as filters (see figure 2e).
We present a re-implementation of [25] based on ACF’s [7]
source code. We follow the original description as closely
as possible. We use the same top 4 filters of 10×10 pixels,
selected per feature channel based on their eigenvalues (40
filters total). We do change some parameters to be con-
sistent amongst all experiments, see sections 2.3 and 5.
The main changes are the training set (we use Caltech10x,
sampled every 3 frames, instead of every 4 frames in [25]),
and the model size (60×120 pixels instead of 32×64).
As seen in section 7, our implementation (LDCF-Ours)
clearly improves over the previously published numbers
[25], showing the potential of the method.
For comparison with PcaForeground we also consider
training LDCF8where the top 8 filters are selected per chan-
nel (80 filters total).

PcaForeground In LDCF the filters are learned using
all of the training data available. In practice this means
that the learned filters will be dominated by background
information, and will have minimal information about the
pedestrians. Put differently, learning filters from all the
data assumes that the decision boundary is defined by a
single distribution (like in Linear Discriminant Analysis
[24]), while we might want to define it based on the relation
between the background distribution and the foreground
distribution (like Fisher’s Discriminant Analysis [24]). In
PcaForeground we train 8 filters per feature channel, 4
learned from background image patches, and 4 learned from
patches extracted over pedestrians (see figure 2f). Com-
pared to LDCF8 the obtained filters are similar but not
identical, all other parameters are kept identical.

Other than via PcaForeground/LDCF8, it is not clear
how to further increase the number of filters used in LDCF.
Past 8 filters per channel, the eigenvalues decrease to neg-
ligible values and the eigenvectors become essentially ran-
dom (similar to RandomFilters).

To keep the filtered channel features setup close to
InformedHaar, the filters are applied with a step of
6 pixels. However, to stay close to the original LDCF,
the LDCF/PcaForeground filters are evaluated every
2 pixels. Although (for example) LDCF8 uses only ∼10%
of the number of filters per channel compared to Che-
ckerboards4x4, due to the step size increase, the ob-
tained feature vector size is ∼40%.

4. How many filters?
Given a fixed set of channel features, a larger filter bank

provides a richer view over the data compared to a smaller
one. With enough training data one would expect larger
filter banks to perform best. We want thus to analyze the
trade-off between number of filters and detection quality, as
well as which filter bank family performs best.

Figure 3 presents the results of our initial experiments on
the Caltech validation set. It shows detection quality versus
number of filters per channel. This figure densely summar-
izes ∼30 trained models.

InformedFilters The first aspect to notice is
that there is a meaningful gap between Informed-
Haar-Ours and InformedFilters despite having a
similar number of filters (209 versus 212). This validates
the importance of letting Adaboost choose the pooling loc-
ations instead of hand-crafting them. Keep in mind that
InformedHaar-Ours is a top performing baseline (see
§2.2).
Secondly, we observe that (for the fixed training data avail-
able) ∼50 filters is better than ∼200. Below 50 filters the
performance degrades for all methods (as expected).
To change the number of filters in InformedFilters
we train a full model (212 filters), pick the N most
frequently used filters (selected from node splitting in
the decision forest), and use these to train the de-
sired reduced model. We can select the most fre-
quent filters across channels or per channel (marked as
Inf.FiltersPerChannel). We observe that per chan-
nel selection is slightly worse than across channels, thus we
stick to the latter.
Using the most frequently used filters for selection is clearly
a crude strategy since frequent usage does not guarantee
discriminative power, and it ignores relation amongst fil-
ters. We find this strategy good enough to convey the main
points of this work.

Checkerboards also reaches best results in the ∼50
filters region. Here the number of filters is varied by chan-



Training Method L2 L3 L4 L5

Caltech
ACF

50.2 42 .1 48.8 48.7
Caltech10x 52.6 49.9 44.9 41 .3

Caltech Checker- 32.9 30.4 28 .0 31.5
Caltech10x boards 37.0 31.6 24 .7 24 .7

Table 1: Effect of the training volume and decision tree
depth (Ln) over the detection quality (average miss-rate
on validation set, lower is better), for ACF-Ours and
Checkerboards variant with (61) filters of 4×4 cells.
We observe a similar trend for other filter banks.

ging the maximum filter size (in number of cells). Regard-
ing the lowest miss-rate there is no large gap between the
“informed” filters and this naïve baseline.

RandomFilters The hexagonal dots and their devi-
ation bars indicate the mean, maximum and minimum miss-
rate obtained out of five random runs. When using a larger
number of filters (50) we observe a lower (better) mean but
a larger variance compared to when using fewer filters (15).
Here again the gap between the best random run and the
best result of other methods is not large.
Given a set of five models, we select the N most frequently
used filters and train new reduced models; these are shown
in the RandomFilters line. Overall the random filters
are surprisingly close to the other filter families. This indic-
ates that expanding the feature channels via filtering is the
key step for improving detection quality, while selecting the
“perfect” filters is a secondary concern.

LDCF/PcaForeground In contrast to the other filter
bank families, LDCF under-performs when increasing the
number of filters (from 4 to 8) while using the standard Cal-
tech training set (consistent with the observations in [25]).
PcaForeground improves marginally over LDCF8.

Takeaways From figure 3 we observe two overall trends.
First, the more filters the merrier, with ∼50 filters as sweet
spot for Caltech training data. Second, there is no flagrant
difference between the different filter types.

5. Additional training data
One caveat of the previous experiments is that as we

increase the number of filters used, so does the number
of features Adaboost must pick from. Since we increased
the model capacity (compared to ACF which uses a single
filter), we consider using the Caltech10x dataset (§2.1) to
verify that our models are not starving for data. Similar to
the experiments in [25], we also reconsider the decision tree
depth, since additional training data enables bigger models.

Results for two representative methods are collected in
table 1. First we observe that already with the original train-
ing data, deeper trees do provide significant improvement
over level-2 (which was selected when tuning over INRIA

Aspect MR ∆MR
ACF-Ours 50.8 -
+ filters 32.9 +17.9
+ L4 28.0 +4.9
+ Caltech10x 24.7 +3.3
+ Realboost 24.4 +0.3

Checkerboards4x4 24.4 +26.4

Table 2: Ingredients to build our strong detectors (using
Checkerboards4x4 in this example, 61 filters). Val-
idation set log-average miss-rate (MR).

data [8, 1]). Second, we notice that increasing the training
data volume does provide the expected improvement only
when the decision trees are deep enough. For our following
experiments we choose to use level-4 decision trees (L4)
as a good balance between increased detection quality and
reasonable training times.

Realboost Although previous papers on ChnFtrs de-
tectors reported that different boosting variants all obtain
equal results on this task [8, 1], the recent [25] indicated
that Realboost has an edge over discrete Adaboost when
additional training data is used. We observe the same beha-
viour in our Caltech10x setup.

As summarized in table 2 using filtered channels, deeper
trees, additional training data, and Realboost does provide a
significant detection quality boost. For the rest of the paper
our models trained on Caltech10x all use level-4 trees and
RealBoost, instead of level-2 and discrete Adaboost for the
Caltech1x models.

Timing When using Caltech data ACF takes about one
hour for training and one for testing. Checkerboards-
4x4 takes about 4 and 2 hours respectively. When using
Caltech10x the training times for these methods augment to
2 and 29 hours, respectively. The training time does not in-
crease proportionally with the training data volume because
the hard negative mining reads a variable amount of images
to attain the desired quota of negative samples. This amount
increases when a detector has less false positive mistakes.

5.1. Validation set experiments

Based on the results in table 2 we proceed to evaluate on
Caltech10x the most promising configurations (filter type
and number) from section 4. The results over the Caltech
validation set are collected in table 3. We observe a clear
overall gain from increasing the training data.

Interestingly with enough RandomFilters we can
outperform the strong performance of LDCF-Ours. We
also notice that the naïve Checkerboards outperforms
the manual design of InformedFilters.



Filters type # Caltech Caltech10x
∆MR

filters MR MR
ACF-Ours 1 50.2 39.8 10.4
LDCF-Ours 4 37.3 34.1 3.2

LDCF8 8 42.6 30.7 11.9
PcaForeground 8 41.6 28.6 13.0
RandomFilters 50 36.5 28.2 8.3

InformedFilters 50 30.3 26.6 3.7
Checkerboards 39 30.9 25.9 5.0
Checkerboards 61 32.9 24.4 8.5

Table 3: Effect of increasing the training set for different
methods, quality measured on Caltech validation set (MR:
log-average miss-rate).

6. Add-ons

Before presenting the final test set results of our “core”
method (section 7), we review some “add-ons” based on the
suggestions from [2]. For the sake of evaluating comple-
mentarity, comparison with existing methods, and reporting
the best possible detection quality, we consider extending
our detector with context and optical flow information.

Context Context is modelled via the 2Ped re-scoring
method of [28]. It is a post-processing step that merges our
detection scores with the results of a two person DPM [11]
trained on the INRIA dataset (with extended annotations).
In [28] the authors reported an improvement of ∼5 pp (per-
cent points) on the Caltech set, across different methods. In
[2] an improvement of 2.8 pp is reported over their strong
detector (SquaresChnFtrs+DCT+SDt 25.2% MR). In
our experiments however we obtain a gain inferior to 0.5 pp.
We have also investigated fusing the 2Ped detection results
via a different, more principled, fusion method [43]. We ob-
serve consistent results: as the strength of the starting point
increases, the gain from 2Ped decreases. When reaching
our Checkerboards results, all gains have evaporated.
We believe that the 2Ped approach is a promising one,
but our experiments indicate that the used DPM template
is simply too weak in comparison to our filtered channels.

Optical flow Optical flow is fed to our detector as an ad-
ditional set of 2 channels (not filtered). We use the imple-
mentation from SDt [30] which uses differences of weakly
stabilized video frames. On Caltech, the authors of [30] re-
ported a∼7 pp gain over ACF (44.2% MR), while [2] repor-
ted a ∼5 pp percent points improvement over their strong
baseline (SquaresChnFtrs+DCT+2Ped 27.4% MR).
When using +SDt our results are directly comparable to
Katamari [2] and SpatialPooling+ [29] which both
use optical flow too.
Using our stronger Checkerboards results SDt
provides a 1.4 pp gain. Here again we observe an erosion
as the starting point improves (for confirmation, reproduced
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Figure 4: Some of the top quality detection methods on the
Caltech test set.

the ACF+SDt results [30], 43.9%→33.9% MR). We name
our Checkerboards+SDt detector All-in-one.

Our filtered channel features results are strong enough to
erode existing context and flow features. Although these re-
main complementary cues, more sophisticated ways of ex-
tracting this information will be required to further progress
in detection quality.

It should be noted that despite our best efforts we could
not reproduce the results from neither 2Ped [28] nor SDt
[30] on the KITTI dataset (in spite of its apparent similarity
to Caltech). Effective methods for context and optical flow
across datasets have yet to be shown. Our main contribution
remains on the core detector (only HOG+LUV features over
local sliding window pixels in a single frame).

7. Test set results
Having done our exploration of the parameters space

on the validation set, we now evaluate the most promising
methods on the Caltech and KITTI test sets.

Caltech test set Figures 5 and 4 present our key results
on the Caltech test set. For proper comparison, only meth-
ods using the same training set should be compared (see
[2, figure 3] for a similar table comparing 50+ previous
methods). We include for comparison the baselines men-
tioned in section 2.2, Roerei [1] the best known method
trained without any Caltech images, MT-DPM [44] the
best known method based on DPM, and SDN [22] the
best known method using convolutional neural networks.
We also include the top performers Katamari [2] and
SpatialPooling+ [29]. We mark as “CaltechN×”
both the Caltech10x training set and the one used in LDCF
[25] (see section 5).

KITTI test set Figure 6 presents the results on the KITTI
test set (“moderate” setup), together with all other reported
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Roerei 48.4%
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MT-DPM 40.5%
SDN 37.9%

ACF+SDt 37.3%
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InformedHaar 34.6%
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LDCF 24.8%
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RandomFilters 18.5%
Checkerboards 18.5%

All-in-one 17.1%

Detection quality on Caltech test set
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Caltech training
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Optical flow

Figure 5: Some of the top quality detection methods for
Caltech test set (see text), and our results (highlighted with
white hatch). Methods using optical flow are trained on
original Caltech except our All-in-one which uses Cal-
tech10x. CaltechN× indicates Caltech10x for all methods
but the original LDCF (see section 2.1).

methods using only monocular image content (no stereo or
LIDAR data). The KITTI evaluation server only recently
has started receiving submissions (14 for this task, 11 in the
last year), and thus is less prone to dataset over-fitting.
We train our model on the KITTI training set using almost
identical parameters as for Caltech. The only change is a
subtle pre-processing step in the HOG+LUV computation.
On KITTI the input image is smoothed (radius 1 pixel) be-
fore the feature channels are computed, while on Caltech
we do not. This subtle change provided a ∼4 pp (percent
points) improvement on the KITTI validation set.

7.1. Analysis

With a ∼10 pp (percent points) gap between ACF/In-
formedHaar and ACF/InformedHaar-Ours (see fig-
ure 5), the results of our baselines show the importance
of proper validation of training parameters (large enough
model size and negative samples). InformedHaar-
-Ours is the best reported result trained with Caltech1x.

When considering methods trained on Caltech10x, we
obtain a clear gap with the previous best results (LDCF
24.8% MR→Checkerboards 18.5% MR). Using our
architecture and an adequate number of filters one can ob-
tain strong results using only HOG+LUV features. The
amongst the options we considered the filter type seems not
critical, in our experiments Checkerboards4x3 reaches
the best performance given the available training data.
RandomFilters reaches the same result, but requires

KITTI Pedestrians, moderate difficulty
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Figure 6: Pedestrian detection on the KITTI dataset (using
images only).

training and merging multiple models.
Our results cut by half miss-rate of the best known

convnet for pedestrian detection (SDN [22]), which in
principle could learn similar low-level features and their fil-
tering.

When adding optical flow we further push the state of
the art and reach 17.1% MR, a comfortable∼5 pp improve-
ment over the previous best optical flow method (Spa-
tialPooling+). This is the best reported result on this
challenging dataset.

The results on the KITTI dataset confirm the strength
of our approach, reaching 54.0% AP, just 1 pp below the
best known result on this dataset. Competing methods
(Regionlets [42] and SpatialPooling [29]) both
use HOG and additional LBP and covariance features, as
well as an intermediate max-pooling step. Adding these re-
mains a possibility for our system. Our results also improve
over methods using LIDAR+Image, such as Fusion-DPM
[31] (46.7% AP, not included in figure 6 for clarity).

8. Conclusion

Through this paper we have shown that the seem-
ingly disconnected methods ACF, (Squares)ChnFtrs,
InformedHaar, and LDCF can be all put under the
filtered channel features detectors umbrella. We have sys-
tematically explored different filter banks for such architec-
ture and shown that they provide means for important im-
provements for pedestrian detection. Our results indicate
that HOG+LUV features have not yet saturated, and that
competitive results (over Caltech and KITTI datasets) can
be obtained using only them. When optical flow inform-
ation is added we set the new state of art for the Caltech
dataset, reaching 17.1% MR (93% recall at 1 false positive
per image).

In future work we plan to explore how the insights of
this work can be exploited into a more general detection
architecture such as convolutional neural networks.
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