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Abstract

We present a simple, efficient model for learning bound-
ary detection based on a random forest classifier. Our ap-
proach combines (1) efficient clustering of training exam-
ples based on a simple partitioning of the space of local
edge orientations and (2) scale-dependent calibration of in-
dividual tree output probabilities prior to multiscale combi-
nation. The resulting model outperforms published results
on the challenging BSDS500 boundary detection bench-
mark. Further, on large datasets our model requires sub-
stantially less memory for training and speeds up training
time by a factor of 10 over the structured forest model. 1

1. Introduction

Accurately detecting boundaries between objects and
other regions in images has been a long standing goal since
the early days of computer vision. Accurate boundary es-
timation is an important first step for segmentation and de-
tection of objects in a scene and boundaries provide useful
information about the shape and identity of those objects.
Early work such as the Canny edge detector [6] focused on
detecting brightness edges, estimating their orientation [11]
and analyzing the theoretical limits of detection in the pres-
ence of image noise. However, simple brightness or color
gradients are insufficient for handling many natural scenes
where local gradients are dominated by fine scale clutter and
texture arising from surface roughness and varying albedo.

Modern boundary detectors, such as [18], have empha-
sized the importance of suppressing such responses by ex-
plicit oriented analysis of higher order statistics which are
robust to such local variation. These statistics can be cap-
tured in a variety of ways, e.g. via textons [15], sparse cod-
ing [22], or measures of self-similarity [14]. Such boundary
detectors also generally benefit from global normalization
provided by graph-spectral analysis [2] or ultra-metric con-

1This work was supported by NSF DBI-1053036, DBI-1262547, and
IIS-1253538

sistency [1] which enforce closure, boosting the contrast of
contours that completely enclose salient regions.

Recently, focus has turned to methods that learn appro-
priate feature representations from training data rather than
relying on carefully hand-designed texture and brightness
contrast measures. For example, [22] learns weightings for
each sparse code channel and hypothesized edge orienta-
tion while [8, 16] predict the probability of a boundary at
an image location using a cascade or randomized decision
forest built over simple image features. Taking this one
step further, the work of [17] and [9] learn not only input
features but also the output space using sparse coding or
structured-output decision forests respectively. While these
approaches haven’t yielded huge gains in boundary detec-
tion accuracy, they are appealing in that they can adapt to
other domains (e.g., learning input features for boundary
detection in RGB-D images [22, 9] or predicting semantic
segmentation outputs [17]). On the other hand, a key dif-
ficulty with these highly non-parametric approaches is that
it is difficult to control what is going on “under the hood”
and to understand why they fail or succeed where they do.
Like a fancy new car, they are great when they work, but if
ever stranded on a remote roadside, one suddenly discovers
there are very few user serviceable parts inside.

In this paper we to take a step back from non-parametric
outputs and instead apply the robust machinery of random-
ized decision forests to the simple task of accurately detect-
ing straight-line boundaries at different candidate orienta-
tions and positions within a small image patch. Although
this ignores a large number of interesting possibilities such
as curved edges and junctions, it should certainly suffice for
most small patches of images containing big, smooth ob-
jects. We show that such a model, appropriately calibrated
and averaged across a small number of scales, along with
local sharpening of edge predictions outperforms the best
reported results on the BSDS500 boundary detection bench-
mark.

The rest of the paper is structured as follows. In Sec-
tion 2, we describe our method for partitioning the space of
possible oriented edge patterns within a patch. This leads
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Figure 1: Our boundary detector consists of a decision for-
est that analyzes local patches and outputs probability dis-
tributions over the space of oriented edges passing through
the patch. This space is indexed by orientation and signed
distance to the edge (d, θ). These local predictions are cal-
ibrated and fused over an image pyramid to yield a final
oriented boundary map.

to a simple, discrete labeling over local edge structures.
In Section 3, we discuss how to use this discrete labeling
to train a random forest to predict edge structure within a
patch, and describe a calibration procedure for improving
the posterior distributions emitted by the forest. Section 4
then describes how to map the distributions computed over
the image into a final, high-quality edge map. Finally, in
Section 5 we show experimental results on the BSDS500
boundary detection benchmark.

2. Clustering Edges

From a ground truth boundary image, we categorize a
p× p patch either as containing no boundary (background)
or as belonging to one of a fixed number of edge categories.
A patch is considered background if its center is more than
p/2 pixels away from an edge, in which case the patch con-
tains little to no edge pixels.

Non-background patches are distinguished according to
the distance d and orientation θ of the edge pixel clos-
est to the patch center. Thus, patches with d = 0 have
an edge running through the center, and by definition d is
never greater than p/2. We choose a canonical orientation
for each edge so that θ lies in the interval (−π/2, π/2].
To distinguish between patches on different sides of an
edge with the same orientation, we utilized signed distances
d ∈ (−p/2, p/2). This yields a parameter pair (d, θ) for
each non-background patch.

Figure 1 shows this two dimensional space of patches. It
is worth noting that this space can be given an interesting
topology. Since orientation is periodic, a straight edge with
parameter (d, θ) appears identical to one with parameter
(−d, θ+π). One can thus identify the top and bottom edges
of the space in Figure 1, introducing a half-twist to yield a
Möbius strip whose boundary is {(d, θ) : |d| = p/2}.2

2One could also parameterize lines by angle θ ∈ (−π, π] and unsigned

From a ground-truth edge map, computing the distance
between a patch center and the nearest edge pixel q is
straightforward. To be useful, the estimate of θ should re-
flect the dominant edge direction around q, and be robust
to small directional changes at q. To accomplish this, we
first link all edge pixels in a ground-truth boundary map
into edge lists, breaking lists into sublists where junctions
occur. We then measure the angle at q by fitting a polyno-
mial to the points around q that are in the same list. In our
experiments we use a fitting window of ±6 pixels.

Because annotators sometimes attempt to trace out ex-
tremely fine detail around an object, boundary annotations
will occasionally include very short, isolated “spur” edges
protruding from longer contours. Where these occur, esti-
mates of θ can suffer. We remove all such edges provided
that they are shorter than 7 pixels in length. Using standard
morphological operations we also fill holes if they exist and
thin the result to ensure that all lines are a single pixel thick.

Collecting training data We binned the space of dis-
tances d and angles θ into n and m bins, respectively. Thus
every non-background patch was assigned to a discrete label
k out of K = nm possible labels. This discrete label space
allows for easy application of a variety of off-the-shelf su-
pervised learning algorithms.

In our experiments we used a patch size of 16× 16 pix-
els, so that distances satisfy |d| < p/2 = 8. It is natural to
set the distance bins one pixel apart, so that d falls into one
of n = 15 bins. Assigning angles θ to one of m = 8 bins,
leaves K = 120 edge classes plus background. We chose
the orientation binning so that bins 1 and 5 are centered at
90 and 0 degrees respectively, as these orientations are es-
pecially common in natural images [21]. Figure 1(a) shows
the average ground-truth edge map for all image patches as-
signed to each of these clusters.

In our experiments we sampled patches uniformly over
image locations and over labelings derived from multi-
ple ground-truth segmentations of that image. Since our
approach ultimately predicts a (d, θ) parameter for each
non-background image patch, it does not explicitly model
patches containing junctions or thin structures involving
more than two segments. In practice, such events are rel-
atively rare. In the BSDS500 training dataset, patches con-
taining more than two segments constitute less than 8% of
image patches and only 27% of all non-background patches.
To simplify the learning problem faced by the local classi-
fier, we only utilize patches that contain one or two seg-
ments for training.

distance d ≥ 0. However, this space has a singularity at d = 0 where
patches (0, θ) and (0, θ+ π) are indistinguishable to an edge detector but
have different angle parameters. Our parameterization is convenient since
it assigns unique coordinates to each line and is smooth everywhere.
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Figure 2: Reliability plot showing the empirical probability
of a ground-truth edge label as a function of the score output
by the forest computed over a set of validation images. Er-
ror bars show standard error in the empirical expectation.
Red curve shows a simple functional fit 1 − exp(−βw)
which appears to match the empirical distribution well. We
use this estimated function (one scalar parameter β per
scale) to calibrate the distribution of scores over different
edges (d, θ) predicted by the forest. Performing this calibra-
tion prior to combining and compositing predictions across
scales improves final performance.

3. Oriented Edge Forest

Using the labeling procedure outlined in Section 2,
we can build a training dataset comprised of color image
patches x, each with a corresponding edge cluster assign-
ment y ∈ {0, 1, . . . ,K} where K is the number of edge
clusters and y = 0 represents the background or “no bound-
ary” class. Inspired by the recent success of random deci-
sion forests for edge detection [16, 9], we train a random
forest classifier to learn a mapping from patches to this la-
bel set. In this section we discuss forest training and cali-
bration procedures that yield high-quality edge probability
estimates.

Randomized Decision Forests Random forests are a
popular ensemble method in which randomized decision
trees are combined to produce a strong classifier. Trees are
made random through bagging and/or randomized node op-
timization [7], in which the binary splits at the nodes of the
tree are limited to using only a random subset of features.

In our framework, the output label space predicted by the
forest is a small discrete set (K possible edge orientations
and locations relative to the center of the patch or back-
ground) and may be treated simply as a k-way classification
problem. When training a given decision tree, features are
selected and split thresholds are chosen to optimize the Gini
impurity measure [5]. In practice we find that the particular
choice of class purity metric does not have a noticeable im-
pact on performance. We did find it important to have bal-

anced training data across classes and used an equal number
training examples per class.

Image Features We adopt the same feature extraction
process used in [9]. In this approach, images are trans-
formed into a set of feature channels, and the descriptor
for a patch is computed simply by cropping from the cor-
responding window in the array of feature channels. These
features are comprised of color and gradient channels, and
are downsampled by a factor of 2. Binary splits performed
at the tree nodes are accomplished by thresholding either
a pixel read from a channel or the difference between two
pixels from the same channel. See [9] for full details.

Ensemble Averaging Equipped with a forest trained to
recognize oriented edge patterns, the next step is to apply
the forest over the input image. We have found that the de-
tails of how we fuse the predictions of different trees can
have a significant effect on performance. Two standard ap-
proaches to combining the output of a ensemble of classi-
fiers are averaging and voting.

For a given test image patch x, each individual tree t
produces an estimate pt(k|x) of the posterior distribution
over the K + 1 class labels based on the empirical distri-
bution observed during training. We would like to combine
these individual estimates into a final predicted score vector
w(k|x). The most obvious way to combine the tree outputs
is averaging

w(k|x) = 1

T

T∑
t=1

pt(k|x), k = 1, ...,K (1)

An alternative, often used for ensembles of classifiers which
only output class labels instead of posteriors is voting

w(k|x) = 1

T

T∑
t=1

1[k=argmaxk pt(k|x)] (2)

where 1 is the indicator function.
In general, we find that averaging provides somewhat

better detection accuracy than voting, presumably because
the votes carry less information than the full posterior dis-
tribution (see Section 5). One disadvantage of averaging is
that it requires one to maintain in memory all of the em-
pirical distributions p at every leaf of every tree. Voting not
only requires less storage for the forest but also reduces run-
time. Constructing w via averaging requires O(KT ) while
voting only requires O(T ). The resulting w is also sparse
which can lead to substantial speed improvements in the
edge fusion steps described below (Section 4). Voting may
thus be an efficient alternative for time-critical applications.



Calibration In order to fuse edge predictions across dif-
ferent scales within an image and provide boundary maps
whose values can be meaningfully compared between im-
ages, we would like the scores w to be accurately calibrated.
Ideally the scores w output for a given patch would be the
true posterior probability over edge types for that patch. Let
x be a patch sampled from the dataset and y the true edge
label for that patch. If the scores w(k|x) output by the clas-
sifier are calibrated then we would expect that

P (y = k |w(k|x) = s) = s (3)

To evaluate calibration, we extracted a ground-truth label
indicator vector for every labeled image patch in a held-out
set of validation patches {(xi, yi)}.3 We then computed the
empirical expectation of how often a particular label k was
correct for those patches that received a particular score s.

P (y = k |w(k|x) = s) ≈ 1

|B(k, s)|
∑

i∈B(k,s)

1[yi=k] (4)

where
B(k, s) = {i : w(k|x) ∈ [s± ε]}

is a bin of width 2ε centered at s.
Figure 2 shows the resulting reliability plot, aggregated

over non-background patches. Results were very similar for
individual edge labels. While one might expect that a for-
est trained to minimize entropy of the posterior predictions
would tend to be overconfident, we found that the forest av-
erage scores for non-background patches actually tended to
underestimate the true posterior! This remained true regard-
less of whether we used voting or averaging.

Previous work has used logistic regression in order to
calibrate classifier output scores [19]. For the oriented
edge forest, we found that this miscalibration for non-
background labels is much better fit by an exponential

ŵ(k|x) = fβ(w(k|x)) = 1− exp(−βw(k|x)) (5)

where β is a scalar. We fitted this function directly to the
binary indicator vectors 1[yi=k] rather than binned averages
in order to give equal weight to each training example.

We also explored a wide variety of other calibration
models including sigmoid-shaped functions such as tanh,
richer models that fit an independent parameter βk per class
label, and joint calibration across all class labels. We even
considered a non-parametric approach in which we treated
the 120-D ground truth label vectors as structured labels
and trained an additional structured random forest [10]. We
found that using a single scalar β for all non-background

3When multiple humans segmentations generated conflicting labels for
the patch, we averaged them to produce a “soft” non-binary label vector.

patch sh = 0 sh = 1 sh = 2

Figure 3: Examples of sharpening a singe predicted edge
patch label based on underlying image evidence. The patch
is resegmented based on the initial straight edge label (2nd
column) by reassigning pixels near the boundary to the re-
gion with more similar mean RGB value.

scores is highly efficient4 and performed as well as any cal-
ibration scheme we tried. When performing multiscale fu-
sion (Section 4), we fit a distinct β for each scale, the values
of which typically ranged from 6 to 10.

4. Edge Fusion

Having applied the forest over the input image, we are
left with a collection of calibrated probability estimates ŵ at
every spatial position. Because these distributions express
the likelihood of both centered (d = 0) as well as distant,
off-center (d 6= 0) edges, the probability of boundary at a
given location is necessarily determined by the tree predic-
tions over an entire neighborhood around that location. In
this section, we describe how to resolve these probabilities
into a single, coherent image of boundary strengths. The
end result will be an oriented signalE(x, y, θ) that specifies
the probability of boundary at location (x, y) in the binned
direction θ.

Edge sharpening By focusing on oriented lines, our de-
tector is trained to recognize coarse edge statistics but can-
not predict more detailed structure, e.g. local curvature or
wiggles of a few pixels in a contour. As the size of the an-
alyzed patch increases relative to the size of an object, the
straight line assumption becomes a less accurate represen-
tation of the shape. In order to provide a more detailed pre-
diction of the contour shape, we utilize a local segmentation
procedure similar to the sharpening method introduced by
Dollár and Zitnick [10]. This is similar in spirit to the no-
tion of “Edge Focusing” [4] in which coarse-to-fine tracking

4For a sparse voting implementation, one can do nearly as well using
the fast approximation f(w) = min{1,w}.



utilizes edge contrast measured at a coarse scale but contour
shape derived from fine scale measurements.

Consider a hypothesized (straight) edge predicted by the
forest at a given location. We compute the mean RGB color
of the pixels on each side of the hypothesized edge inside
a 16 × 16 pixel patch centered at the location. We then re-
segment pixels inside the patch by assigning them to one
of these two cluster means. To prevent the local segmen-
tation from differing wildly with the original oriented line
predicted by the forest, we only reassign pixels within 1 or
2 pixels distance from the hypothesized segment boundary.
We will use the notation M(x,y,k)(i, j) to denote the sharp-
ened binary edge mask of type k = (d, θ) computed for
a patch centered at location (x, y) in an input image. Fig-
ure 3 shows examples of individual patches along with the
resulting mask M for more and less aggressive sharpening.

Compositing Given local estimates of the likelihood (cal-
ibrated scores ŵ) and precise boundary shapes (sharpened
masks M ) for each image patch, we predict whether a loca-
tion (x, y) is on a boundary by averaging over patch predic-
tions for all patches that include the given location. Using
the convention that M(x,y,k)(0, 0) is the center of a given
edge mask and indexing ŵ by the coordinates of each patch
in the image, we can write this formally as

E(x, y, θ) =
∑

k∈{(d,θ)∀d}

∑
(i,j)∈Oxy

ŵ(i, j, k)M(i,j,k)(x−i, y−j)

where Oxy are the coordinates of patches overlapping x, y
and k ranges over all predicted labels which are compatible
with orientation θ.5

Combining multiple scales The compositing procedure
in the previous section can easily be repeated to produce an
E(x, y, θ, s) for different scaled versions of an input image.
In general, combining results at different scales is known to
improve performance [20]. We apply the detector at four
scales. To detect large-scale edge structure we run at scales
s = 1/4, 1/2. We find that at these resolutions heavy sharp-
ening is less desirable (see Figure 4). Finer edge structure is
discovered at scales s = 1, 2, and at these scales more ag-
gressive sharpening is preferred. The results are averaged
to produce a final output, as in [9]. The strengths of each
scale can be seen in benchmark results in Figure 7, where
the curves tend toward higher precision and lower recall as
s decreases. It is interesting to note that including s = 2
is beneficial despite being dominated everywhere by s = 1.
As lower scales are added, precision increases but asymp-
totic recall suffers. Including scale 2 allows us to maintain
the benefits of low scales without the loss in recall.

5Note that if we do not perform any sharpening on the edge masks, then
M is the same at every image location (i, j) and the resulting operation is
simply a correlation of ŵ with M summed over channels k.

Figure 4: The output of the forest when run at different
scales (by down/up-sampling the input image and with dif-
ferent degrees of edge sharpening). Running the forest on
a low-resolution version of the image yields blurry detec-
tions that respond to coarse scale image structure. Sharpen-
ing allows the spatial localization of this broad signal and
alignment of predictions made by overlapping local classi-
fiers. We found that coarse scale information is best uti-
lized by performing only modest sharpening of the lowest-
resolution output to allow strong, broad edge responses to
combine with finely localized edges from higher scales.

5. Experiments
5.1. Benchmark Performance

Figure 5 shows the performance of our model on the
BSDS500 test set over the full range of operating thresh-
olds. Our system outperforms existing methods in the high
precision regime, and is virtually identical to SE [10] at high
recall. Table 1 lists quantitative benchmark results and com-
pares them to recently published methods.

Regions We combine OEF with MCG [3] to produce seg-
mentation hierarchies from our edge detector output. MCG
originally used contour strengths from SE, and we found
its implementation is sensitive to the statistics of SE output.
Rather than tune the implementation, we simply applied a
monotonic transformation of our detector output to match
the SE distribution (see Section 5.2). The resulting com-
bination, denoted OEF+MCG in Figure 5 and Table 1, is
surprisingly effective, attaining an ODS of 0.76 on BSDS.

Diagnostic experiments The performance benefits of
calibration are shown in Table 2. Calibration results in a
clear improvement below 50% recall, boosting average pre-
cision from 0.81 to 0.82. In the same table we also report
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[F=.80] Human

[F=.76,AP=.76] OEF+MCG

[F=.75,AP=.82] OEF

[F=.75,AP=.80] SE

[F=.74,AP=.77] SCG

[F=.73,AP=.73] gPb−owt−ucm

Figure 5: Results on BSDS500. Our system outperforms
existing methods in the high precision regime, and is virtu-
ally identical to SE at high recall.

benchmark scores for our model when predictions from the
ensemble are combined by voting (Eqn 2) rather than av-
eraging. Voting appears to match averaging up to roughly
20% recall, beyond which it falls behind.

Amount of training data We find that our model ben-
efits significantly from large amounts of training data. In
Figure 6, we show how performance on BSDS500 varies as
the amount of patches used for training is increased. Im-
portant for utilizing large datasets is efficient training. We
discuss timing details in Section 5.3.

5.2. Visualizing Detector Output

Qualitative results on a selection of test images are
shown in Figure 8. Notice that although the forest is trained
only to detect straight edges, its performance at corners and
junctions is as good as any other method.

One difficulty with visualizing boundary detector out-
puts is that monotonic transformations of the output bound-
ary maps do not affect benchmark performance but can dra-
matically affect the qualitative perception of boundary qual-
ity. A consequence of this is that qualitative comparisons of
different algorithms can be misleading, as the most salient
differences tend not to be relevant to actual performance.

To visualize boundary detector outputs in a way that
highlights relevant differences but removes these nuisance
factors without affecting benchmark results, we determine
a global monotonic transformation for each boundary de-
tector which attempts to make the average histogram of re-
sponse values across all images match a standard distribu-
tion. We first choose a reference algorithm (we used SE)
and compute its histogram of responses over an image set
to arrive at a target distribution. For every boundary map
produced by another algorithm we compute a monotonic
transformation for that boundary map that approximately
matches its histogram to the target distribution. Averaging

ODS OIS AP6

Human .80 .80
gPb [2] .71 .74 .65
gPb-owt-ucm [2] .73 .76 .73
Sketch Tokens [16] .73 .75 .78
SCG [22] .74 .76 .77
DeepNet [13] .74 .76 .76
PMI [12] .74 .77 .78
SE [10] .75 .77 .80
SE + MCG [3] .75 .78 .76
OEF .75 .77 .82
OEF + MCG .76 .79 .76

Table 1: Benchmark scores on BSDS500.

these mappings produces a single monotonic transforma-
tion specific to that algorithm which we use when display-
ing outputs.

5.3. Computational Costs

A key advantage of our simplified approach relative to
SE [10] is significantly reduced resources required at train-
ing time. We report training times for both systems as-
suming each tree is trained on its own bootstrap sample of
4× 106 patches.

Training For both models, the data sampling stage takes
∼20 minutes per tree. Because we expose the trees to
smaller random feature sets, this takes approximately 15 gi-
gabytes (GB) of memory, compared to 33 GB for SE. To
train on this much data, SE takes over 3.25 hours per tree
and requires about 54 GB of memory. This is due to the
per-node discretization step, where at every tree node PCA
is applied to descriptors derived from the training exam-
ples at that node. In contrast, our approach is almost 40×
faster, taking about 5 minutes per tree, with memory usage
at roughly 19 GB.

Detection We report runtimes for images of size 480 ×
320 on an 8-core Intel i7-950. A voting implementation
of our system (Eqn 2) runs in about 0.7 seconds per im-
age, compared to 0.4 seconds for SE. Runtime increases to
2 seconds when using averaging (Eqn 1).

The primary reason that averaging is slower is it requires
more time for edge sharpening since the predicted score
vectors w are not sparse. To reduce the amount of compu-
tation spent on sharpening, we leverage the following ob-
servation. The same oriented edge will appear at different
offsets d across neighboring windows. The weights w for
a given orientation can thus all be aligned (e.g., with the

6We note that the lower AP for MCG is because the benchmark com-
putes average precision over the interval [0, 1] but the precision-recall
curve does not extend to 0 recall. Monotonically extending the curve to
the left (e.g., as is done in PASCAL VOC) yields AP values of gPb-owt-
ucm=0.76, SCG=0.78, SE+MCG=0.81, OEF+MCG=0.82
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Figure 6: Performance on BSDS500 as a function of the
number of training examples, before calibration (blue) and
after calibration (red). The smallest model was trained on
5×104 examples and the largest on 4×106 examples. Train-
ing times vary from less than one minute (40 seconds data
collection + 6 seconds tree training) per tree for the smallest
model to under 30 minutes (15-20 minutes data collection
+ 5 minutes tree training) per tree for the largest model.

ODS OIS AP

vote .74 .77 .80
average .75 .77 .81

vote+cal .75 .77 .81
average+cal .75 .77 .82
+ sharp = 2,2,2,2 .75 .77 .81
+ sharp = 1,1,1,1 .75 .77 .81
+ sharp = 0,0,0,0 .74 .77 .78

Table 2: We analyze different variants of our system on
BSDS. We use the notation “sharp=a,b,c,d” to indicate the
sharpening levels used for scales 1/4, 1/2, 1, 2, respectively.
All algorithms use sharpen=1,1,2,2 unless otherwise stated.
Rows 1-2 compare voting (Eqn 2) and averaging (Eqn 1)
prior to calibration, showing that having trees emit full dis-
tributions over labels is more powerful than casting sin-
gle votes. Rows 3-4 show that calibration improves per-
formance. The last four rows correspond to the calibrated
model with different sharpening levels, and show that it
helps to do less sharpening at lower scales.

d = 0 channel) by simple translation and summed prior
to sharpening. Thus the collection of 120-dimensional dis-
tributions computed over the image are “collapsed” down
to 8 dimensions, one per orientation. This optimization
reduces runtime from 11 seconds down to just 2 seconds,
while dropping ODS and AP by less than 0.003.

6. Discussion

In many ways our oriented edge forest is similar to SCG
in that we train a classifier which predicts the boundary con-
trast at each hypothesized edge orientation. A chief differ-
ence is the addition of the d parameter which allows the
classifier to make useful predictions even when it is not cen-
tered directly over an edge. For a traditional detector, points
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[F=.75,AP=.81] combined

[F=.74,AP=.80] scale=1, sharpen=2

[F=.72,AP=.77] scale=2, sharpen=2

[F=.71,AP=.75] scale=1/2, sharpen=1

[F=.63,AP=.63] scale=1/4, sharpen=1

Figure 7: Results on BSDS showing the performance of our
algorithm when run at a particular scale, compared to the
results after multiscale combination. No calibration is per-
formed here. Consistent with the findings of [20], the com-
bined model greatly outperforms any fixed-scale model.

near a boundary also tend to have high contrast but it is un-
clear whether they should constitute positive or negative ex-
amples, and such training data is often discarded.

Our proposed system is also quite similar to SE and
Sketch Tokens (it uses the same features, choice of clas-
sifier, etc.). We find it interesting that the inclusion of other
types of output, such as junctions or parallel edges, is not
necessary. Such events are quite rare, so there is probably
not enough training data to really learn the appearance of
more complicated local segmentations. In fact we found
that training SE without complex patches (>2 segments)
worked just as well.

A final observation is that having the classifier output
patches may not be necessary. It is certainly computa-
tionally advantageous since a given pixel receives votes
from many more trees, but given enough trees, we find that
Sketch Tokens performs essentially as well when only pre-
dicting the probability at the center pixel. This suggests that
the real value of structured outputs for edge detection is in
partitioning the training data in a way that simplifies the task
of the decision tree: breaking patches into different clusters
allows the tree to learn the appearance of each cluster sepa-
rately rather than having to discover the structure by mining
through large quantities of data. We hypothesize that other
types of supervisory information—e.g. curvature, depth of
a surface from the camera, change in depth across an edge,
figure-ground orientation of a contour, material or object
category of a surface—may further simplify the job of the
forest, allowing it to better fit the data more readily than
simply training on a larger set of undistinguished patches.



(a) Original image (b) Ground truth (c) SCG [22] (d) SE [10] (e) OEF

Figure 8: Example results on the BSDS test set after non-maximal suppression. Rows 1,4 demonstrate our model correctly
suppressing edges belonging to background texture, such as on the scales on the statue and the dots around the woman’s
face. Also note that in row 2 our results show significantly less weight on the false edges along the surface of the water.
To allow for meaningful visual comparisons, we derive a global monotonic transformation for each algorithm that attempts
to make the distributions of output values the same across all algorithms. This post-processing step preserves the relative
ordering of the edges, so benchmark results are unaffected but some irrelevant differences are eliminated from the boundary
map visualization. Details can be found in Section 5.2.
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