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Abstract

Modern search engines receive large numbers of busi-
ness related, local aware queries. Such queries are best
answered using accurate, up-to-date, business listings, that
contain representations of business categories. Creating
such listings is a challenging task as businesses often
change hands or close down. For businesses with street
side locations one can leverage the abundance of street
level imagery, such as Google Street View, to automate the
process. However, while data is abundant, labeled data is
not; the limiting factor is creation of large scale labeled
training data. In this work, we utilize an ontology of ge-
ographical concepts to automatically propagate business
category information and create a large, multi label, train-
ing dataset for fine grained storefront classification. Our
learner, which is based on the GoogLeNet/Inception Deep
Convolutional Network architecture and classifies 208 cat-
egories, achieves human level accuracy.

1. Introduction
Following the popularity of smart mobile devices, search

engine users today perform a variety of locality-aware
queries, such as Japanese restaurant near me, Food nearby
open now, or Asian stores in San Diego. With the help of
local business listings, these queries can be answered in a
way that is tailored to the user’s location.

Creating accurate listings of local businesses is time con-
suming and expensive. To be useful for the search engine,
the listing needs to be accurate, extensive, and importantly,
contain a rich representation of the business category. Rec-
ognizing that a JAPANESE RESTAURANT is a type of ASIAN
STORE that sells FOOD, is essential in accurately answering
a large variety of queries. Listing maintenance is a never
ending task as businesses often move or close down. In fact
it is estimated that 10% of establishments go out of business
every year, and in some segments of the market, such as the
restaurant industry, the rate is as high as 30% [24].

Figure 1. The multi label nature of business classification is clear
in the image on the left; the main function of this establishment is
to sell fuel, but it also serves as a convenience store. The remaining
images show the fine grained differences one expects to find in
businesses. The shop in the middle image is a grocery store, the
one on the right sells plumbing supplies; visually they are similar.

The turnover rate makes a compelling case for automat-
ing the creation of business listings. For businesses with a
physical presence, such as restaurants and gas stations, it is
a natural choice to use data from a collection of street level
imagery. Probably the most recognizable such collection is
Google Street View which contains hundreds of millions of
360◦ panoramic images, with geolocation information.

In this work we focus on business storefront classifica-
tion from street level imagery. We view this task as a form
of multi-label fine grained classification. Given an image
of a storefront, extracted from a Street View panorama, our
system is tasked with providing the most relevant labels for
that business from a large set of labels. To understand the
importance of associating a business with multiple labels,
consider the gas station shown in Figure 1 (left). While its
main purpose is fueling vehicles, it also serves as a conve-
nience or grocery store. Any listing that does not capture
this subtlety will be of limited value to its users. Similarly,
stores like Target or Walmart sell a wide variety of products
from fruit to home furniture, all of which should be reflected
in their listings. The problem is fine grained as business of
different types can differ only slightly in their visual ap-
pearance. An example of such a subtle difference is shown
in Figure 1. The middle image shows the front of a grocery
store, while the image on the right is of a plumbing supply
store. Visually they are similar. The discriminative infor-
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mation can be very subtle, and appear in varying locations
and scales in the image; this, combined with the large num-
ber of categories needed to cover the space of businesses,
require large amounts of training data.

The contribution of this work is two fold. First, we pro-
vide an analysis of challenges of a storefront classification
system. We show that the intra-class variations can be larger
than differences between classes (see Figure 2). Textual
information in the image can assist the classification task,
however, there are various drawbacks to text based models:
Determining which text in the image belongs to the business
is a hard task; Text can be in a language for which there is
no trained model, or the language used can be different than
what is expected based on the image location (see Figure 3).
We discuss these challenges in detail in Section 3.

Finally, we propose a method for creating large scale la-
beled training data for fine grained storefront classification.
We match street level imagery to known business informa-
tion using both location and textual data extracted from im-
ages. We fuse information from an ontology of entities with
geographical attributes to propagate category information
such that each image is paired with multiple labels with dif-
ferent levels of granularity. Using this data we train a Deep
Convolutional Network that achieves human level accuracy.

2. Related Work

The general literature on object classification is vast. Ob-
ject category classification and detection [9] has been driven
by the Pascal VOC object detection benchmark [8] and
more recently the ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC) [26]. Here, we focus on review-
ing related work on analysis of street view data, fine-grained
classification and the use of Deep Convolutional Networks.

Analyzing Street View Data. Since its launch in 2007,
Google Street View [28, 1] has been used by the computer
vision community as both a test bed for algorithms [19, 31]
and a source from which data is extracted and analyzed [12,
34, 21, 10, 6].

Early work on leveraging street level imagery focused on
3D reconstruction and city modeling. Cornelis et al. [6] fo-
cused on supplying textured 3D city models at ground level
for car navigation system visualizations. Micusik et al. [21]
used image segmentation cues and piecewise planar struc-
tures to build a robust 3D modeling system.

Later works have focused on extracting knowledge from
Street View and leveraging it for particular tasks. In [34] the
authors presented a system in which SIFT descriptors from
100, 000 Street View images were used as reference data to
be queried upon for image localization. Xiao et al. [31] pro-
posed a multi view semantic segmentation algorithm that
classified image pixels into high level categories such as
ground, building, person, etc. Lee et al. [19] described a

weakly supervised approach that mined midlevel visual el-
ements and their connections in geographic data sets. Their
approach discovered elements that vary smoothly over loca-
tion. They evaluated their method using Street View images
from the eastern coast of the United States. Their classifiers
predicted location with a resolution of about 70 miles.

Most similar to our work, is that of Goodfellow et al.
[12]. Both works utilize Street View as a map making
source, and data mine information about real world ob-
jects. They focused on understanding street numbers, while
we are concerned with local businesses. They described a
method for street number transcription in Street View data.
Their approach unified the localization, segmentation, and
recognition steps by using a Deep Convolutional Network
that operated directly on image pixels. The key idea behind
their approach was to train a probabilistic model P (S|X),
where S is a digit sequence, and X an image patch, by max-
imizing logP (S|X) on a large training set. Their method,
which was evaluated on tens of millions of annotated street
number images from Street View, achieved above 90% ac-
curacy and was comparable to human operators.

Fine Grained Classification. Recently there has been re-
newed interest in Fine Grained classification [32, 33, 14]
Yao et al. [33] modeled images by densely sampling rect-
angular image patches, and the interactions between pairs
of patches, such as the intersection of the feature vectors
of two image patches. In [32] the authors proposed a
codebook-free representation which samples a large num-
ber of random patches from training images. They de-
scribed an image by its response maps to matching the
template patches. Branson et al. [4] and Wah et al. [29]
proposed hybrid human-computer systems, which they de-
scribed as a visual version of the 20-question game. At each
stage of the game, the algorithm chooses a question based
on the content of the image, and previous user responses.

Convolutional Networks. Convolutional Networks [11,
18] are neural networks that contain sets of nodes with tied
parameters. Increases in size of available training data and
availability of computational power, combined with algo-
rithmic advances such as piecewise linear units [16, 13]
and dropout training [15] have resulted in major improve-
ments in many computer vision tasks. Krizhevsky et al. [17]
showed a large improvement over state of the art in object
recognition. This was later improved upon by Zeiler and
Fergus [35], and Szegedy et al. [27].

On immense datasets, such as those available today for
many tasks, overfitting is not a concern; increasing the size
of the network provides gains in testing accuracy. Optimal
use of computing resources becomes a limiting factor. To
this end Dean et al. developed DistBelief [7], a distributed,
scalable implementation of Deep Neural Networks. We
base our system on this infrastructure.



Figure 2. Examples of 3 businesses with their names blurred. Can
you predict what they sell? Starting from left they are: Sushi
Restaurant, Bench store, Pizza place. The intra-class variation
can be bigger than the differences between classes. This exam-
ple shows that the textual information in images can be important
for classifying the business category. However, relying on OCR
has many problems as discussed in Section 3.

3. Challenges in Storefront Classification
Large Within-Class Variance. Predicting the function of
businesses is a hard task. The number of possible categories
is large, and the similarity between different classes can be
smaller than within class variability. Figure 2 shows three
business storefronts. Their names have been blurred. Can
you tell the type of the business without reading its name?
Two of them are restaurants of some type, the third sells
furniture, in particular store benches (middle image). It is
clear that the text in the image can be extremely useful for
the classification task in these cases.
Extracted Text is Often Misleading. The accuracy of
text detection and transcription in real world images has in-
creased significantly over the last few years [30, 22], but
relying on the ability to transcribe text has drawbacks. We
would like a method that can scale up to be used on images
captured across many countries and languages. When us-
ing extracted text, we need to train a dedicated model per
language, this requires a lot of effort in curating training
data. Operators need to mark the location, language and
transcription of text in images. When using the system it
would fail if a business had a different language than what
we expect for its location or if we are missing a model for
that language (Figure 3a). Text can be absent from the im-
age, and if present can be irrelevant to the type of the busi-
ness. Relying on text can be misleading even when the lan-
guage model is perfect; the text can come from a neigh-
boring business, a billboard, or a passing bus (Figure 3b).
Lastly, panorama stitching errors may distort the text in the
image and confuse the transcription process (Figure 3c).

However, it is clear that the textual parts of the image do
contain information that can be helpful. Ideally we would
want a system that has all the advantages of using text infor-
mation, without the drawbacks mentioned. In Section 6.3
we show that our system implicitly learns to use textual
cues, but is more robust to these errors.
Business Category Distribution. The natural distribution
of businesses in the world exhibits a “long tail”. Some busi-

(a) Unexpected Language (b) Misleading Text (c) Stitching Errors

Figure 3. Text in the image can be informative but has a number of
characteristic points of failure. (a) Explicitly transcribing the text
requires separate models for different languages. This requires
maintaining models for each desired language/region. If text in
one language is encountered in a an area where that language was
not expected, the transcription would fail. (b) The text can be mis-
leading. In this image the available text is part of the Burger King
restaurant that is behind the gas station. (c) Panorama stitching
errors can corrupt text and confuse the transcription process.

(a) Area Too Small (b) Area Too Large (c) Multiple Businesses

Figure 4. Common mistakes made by operators: a red box shows
the area marked by an operator, a green box marks the area that
should have been selected. (A) Only the signage is selected. (B)
An area much larger than the business is selected. (C) Multiple
businesses are selected as one business.

nesses (e.g. McDonalds) are very frequent, but most of the
mass of the distribution is in the large number of businesses
that only have one location. The same phenomena is also
true of categories. Some labels have an order of magnitude
more samples than others. For example, for the FOOD AND
DRINK category which contains restaurants, bars, cafes,
etc, we have 300,000 images, while for LAUNDRY SER-
VICE our data contains only 13,000 images. We note that a
large part of the distribution’s mass is in smaller categories.

Labeled Data acquisition. Acquiring a large set of high
quality labeled data for training is a hard task in and of itself.
We provide operators with Street View panoramas captured
at urban areas in many cities across Europe, Australia, and
the Americas. The operators are asked to mark image areas
that contain business related information. We call these ar-
eas biz-patches. This process is not without errors. Figure 4
shows a number of common mistakes made by operators.
The operators might mark only the business signage (4a),
an area that is too large and contains unneeded regions (4b),
multiple businesses in the same biz- patch (4c).



4. Ontology Based Generation of Training
Data

Learning algorithms require training data. Deep Learn-
ing methods in particular are known for their need of large
quantities of training instances, without which they overfit.
In this section we describe a process for collecting a large
scale training set, coupled with ontology-based labels.

Building a training set requires matching extracted biz-
patches p and sets of relevant category labels. First, we
match a biz-patch with a particular business instance from
a database of previously known businesses B that was man-
ually verified by operators. We use the textual information
and geographical location of the image to match it to a busi-
ness. We detect text areas in the image, and transcribe them
using an OCR software. This process suffers from the draw-
backs of extracting text, but is useful for creating a set of
candidate matches. This provides us with a set S of text
strings. The biz-patch is geolocated and we combine the
location information with the textual data. For each known
business b ∈ B, we create the same description, by com-
bining its location and the set T of all the textual informa-
tion that is available for it; name, phone number, operating
hours, etc. We decide that p is a biz-patch of b if geograph-
ical distance between them is less than approximately one
city block, and enough extracted text from S matches T .

Using this technique we create a set of 3 million pairs
(p, b). However, due to the factors that motivated our work,
the quality and completeness of the information varies
greatly between businesses. For many businesses we do not
have category information. Moreover, the operators who
created the database were inconsistent in the way they se-
lected categories. For example, a McDonalds can be labeled
as a HAMBURGER RESTAURANT, a FAST FOOD RESTAU-
RANT, a TAKE AWAY RESTAURANT, etc. It is also plau-
sible to label it simply as RESTAURANT. Labeling similar
businesses with varying labels will confuse the learner.

We address this in two ways. First, by defining our task
as a multi label problem we teach the classifier that many
categories are plausible for a business. This, however, does
not fully resolve the issue – When a label is missing from an
example, the image is effectively used as a negative train-
ing instance for that label. It is important that training data
uses a consistent set of labels for similar businesses. Here
we use a key insight: the different labels used to describe
a business represent different levels of specificity. For ex-
ample, a hamburger restaurant is a restaurant. There is
a containment relationship between these categories. On-
tologies are a commonly used resource, holding hierarchi-
cal representations of such containment relations [3, 23].
We use an ontology that describes containment relation-
ships between entities with a geographical presence, such
as RESTAURANT, PHARMACY, and GAS STATION. Our
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Figure 5. Using an ontology that describes relationships between
geographical entities we assign labels at multiple granularities.
Shown here is a snippet of the ontology. Starting from the ITAL-
IAN RESTAURANT concept (diamond), we assign all the predeces-
sors’ categories as labels as well (shown in blue).

ontology, which is based on Google Map Maker’s ontology,
contains over 2,000 categories. For a pair (p, b) for which
we know the category label c, we locate c in the ontology.
We follow the containment relations described by the on-
tology, and add higher-level categories to the label set of p.
The most general categories we consider are: ENTERTAIN-
MENT & RECREATION, HEALTH & BEAUTY, LODGING,
NIGHTLIFE, PROFESSIONAL SERVICES, FOOD & DRINK,
SHOPPING. Figure 5 shows an illustration of this process
on a snippet from the ontology. Starting from an ITALIAN
RESTAURANT, we follow containment relations up prede-
cessors in the ontology, until FOOD & DRINK is reached.

This creates a large set of pairs (p, s) where p is a biz-
patch and s is a matching set of labels with varying levels
of granularity. To ensure there is sufficient training data per
label we omit labels whose frequency is very low and are
left with 1.3 million biz-patches and 208 unique labels.

5. Model Architecture and Training

We base our model architecture on the winning sub-
mission for the ILSVRC 2014 classification and detection
challenges by Szegedy et al. named GoogLeNet [27]. The
model expands on the Network-in-Network idea of Lin et
al. [20] while incorporating ideas from the theoretical work
of Arora et al. [2]. Szegedy et al. forgo the use of fully
connected layers at the top of the network and, by forc-
ing the network to go through dimensionality reduction in
middle layers, they are able to design a model that is much
deeper than previous methods, while dramatically reducing
the number of learned parameters. We employ the DistBe-
lief [7] implementation of deep neural networks to train the
model in a distributed fashion.

We create a train/test split for our data such that 1.2 mil-
lion images are used for training the network and the re-
maining 100,000 images are used for testing. As a busi-
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Figure 6. (a) Accuracy of classification for top K predictions. Us-
ing the top-1 prediction our system is comparable to human oper-
ators (see Table 1). When using the top 5 predictions the accuracy
increases to 83%. (b) Percentage of images for which the first
correct prediction was at rank K. To save space the values for
K ≥ 15 are summed and displayed at the 15th bin.

ness can be imaged multiple times from different angles,
the splitting is location aware. We utilize the fact that Street
View panoramas are geotagged. We cover the globe with
two types of tiles. Big tiles with an area of 18 kilometers,
and smaller ones with area of 2 kilometers. The tiling alter-
nates between the two types of tiles, with a boundary area of
100 meters between adjacent tiles. Panoramas that fall in-
side a big tile are assigned to the training set, and those that
are located in the smaller tiles are assigned to the test set.
This ensures that businesses in the test set were never ob-
served in the training set while making sure that training and
test sets were sampled from the same regions. This splitting
procedure is fast and stable over time. When new data is
available and a new split is made, train/test contamination is
not an issue as the geographical locations are fixed. This al-
lows for incremental improvements of the system over time.

We first pre-train the network using images and ground
truth labels from the ImageNet large scale visual recog-
nition challenge with a Soft Max top layer, and once the
model has converged we replace the top layer, and continue
the training process with our business image data. This pre-
training procedure has been shown to be a powerful initial-
ization for image classification tasks [25, 5]. Each image is
resized to 256 × 256 pixels. During training random crops
of size 220× 220 are given to the model as training images.
We normalize the intensity of the images, add random pho-
tometric changes and create mirrored versions of the images

to increase the amount of training data and guide the model
to generalize. During testing a central box of size 220×220
pixels is used as input to the model. We set the network to
have a dropout rate of 70% (each neuron has a 70% chance
of not being used) during training, and use a Logistic Re-
gression top layer. Each image is associated with all the la-
bels found by the method described in Section 4. This setup
is designed to push the network to share features between
classes that are on the same path up the ontology.

6. Evaluation
In this section we describe our experimental results. We

begin by providing a quantitative analysis of the system’s
performance, then describe two large scale human perfor-
mance studies that show our system is competitive with the
accuracy of human operators and conclude with quantita-
tive results that provide understanding as to what features
the system managed to learn.

When building a business listing it is important to have
very high accuracy. If a listing contains wrong informa-
tion it will frustrate its users. The requirements on coverage
however can be less strict. If the category for some business
images can not be identified, the decision can be postponed
to a later date; each street address may have been imaged
many times, and it is possible that the category could be de-
termined from a different image of the business. Similarly
to the work of Goodfellow et al. [12] on street number tran-
scription, we propose to evaluate this task based on recall
at certain levels of accuracy rather than evaluating the ac-
curacy over all predictions. For automatically building list-
ings we are mainly concerned with recall at 90% precision
or higher. This allows us to build the listing incrementally,
as more data becomes available, while keeping the overall
accuracy of the listing high.

6.1. Fine Grained Classification Results
As described in section 4 each image is associated with

one or more labels. We first evaluate the classifier’s abil-
ity to retrieve at least one of those labels. For an image i,
we define the ground truth label set gi. The predictions pi
are sorted by the classifier’s confidence, and we define the
top-k prediction set pki as the first k elements in the sorted
prediction list. A prediction for image i is considered cor-
rect if gi∩pki 6= ∅. Figure 6a shows the prediction accuracy
as a function of labels predicted. The accuracy at top-k is
shown for k ∈ {1, 3, 5, 7, 10}. Top-1 performance is com-
parable to human annotators (see Section 6.2), and when the
top 5 labels are used the accuracy increases to 83%. Fig-
ure 6b shows the distribution of first-correct-prediction, i.e.
how far down the sorted list of predictions does one need to
search before finding the first label that appears in gi. We
see that the first predicted label is by far the most likely and
that the probability of having a predicted set pki that does not
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contain any of the true labels decreases with k. In order to
save space we sum up all the probabilities for k ∈ [15, 208]
in one bin.

As mentioned above, one important metric for evalua-
tion is recall at specific operating points. Figure 7 shows
precision recall curves for some of the top performing cate-
gories and summary curve of the full system (dashed). The
precision and recall of the full system is calculated by using
the top-1 prediction. For many categories we are able to re-
cover the majority of businesses while precision is held at
90%. For a classification system to be useful in a practical
setting the classifier’s returned confidence must be well cor-
related with the quality of its prediction. Figure 8 shows a
histogram of the number of correctly predicted labels in the
top 5 predictions on a set of images whose labels were man-
ually verified. The mean prediction confidence is indicated
by color intensity (darker means higher confidence). Note
the strong correlation between confidence and accuracy; for
confidence above 80% normally at least 4 of the top labels
are correct.

The GoogLeNet network [27] incorporates a number of
new design elements that make it particularly appealing:
by not using fully connected upper layers, and forcing the
network to go through dimensionality reduction stages, the
network has far fewer parameters while being much deeper
than previous methods. We evaluate the use of this architec-
ture by comparing it to the AlexNet network proposed by
Krizhevsky et al. [17] on a 13 category, single label classi-
fication task. We select a set of useful categories that a user
might search for, and train both networks to predict one la-
bel per image. Figure 9 shows recall at 0.9 precision on all
categories for which at least one method has recall ≥ 0.1.
GoogLeNet outperforms the baseline for all categories, and
for some, e.g. PHARMACY, recall more than doubles.

Figure 10 shows 30 sample images from the test set
with their top 5 predictions. The model is able to classify
these images with their high level categories and with fine
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Figure 9. Recall at 90% precision for the GoogLeNet model used
by our method and the AlexNet architecture [17] on a 13 category
classification task. We show classes for which at least one of the
models has recall ≥ 0.1. GoogLeNet performs better on all cate-
gories. On some, such as PHARMACY recall more than doubles.

grained, specialized classes. For example, the top-right im-
age was classified by the model as: BEAUTY, BEAUTY SA-
LON, COSMETICS, HEALTH SALON, and NAIL SALON.

6.2. Human Performance Studies

Our system needs to perform at human level accuracy.
Otherwise it will require a human verification post pro-
cess. To estimate human accuracy on this task we have
conducted two large scale human performance studies that
check the agreement of operator-provided labels for the
same business. In our experiments, subjects were shown
images of businesses and selected one of 13 options (12
categories, and an OTHER category that stands for “none
of the above”.) Categories were chosen based on their
financial impact for a business listing creator. The cat-
egories are: FOOD STORE, RESTAURANT/CAFFE, FI-
NANCE, PHARMACY, REAL ESTATE, GAS STATION, AU-
TOMOTIVE (other than gas stations), FASHION, LODGING,
LAUNDRY, PLACE OF WORSHIP, BEAUTY. Note that
the studies used full resolution images as opposed to the
256 × 256 images given to the algorithm. The first study
had 73, 272 images, each was shown to two operators. The
operators agreed on 69% of image labels. In our second



Operator Number of images
Agreement Study 1 Study 2

100% 50,425 9,938
75% - 9
66% - 8,535
50% - 133
0% 22,847 1,300

Average Agreement 69% 78%

Table 1. Human Performance studies. In two large scale human
studies we have found that manual labelers agree on a label for
69% and 78% of the images.

study we had 20, 000 images, but each image was shown to
three to four subjects. We found that the average agreement
of the human operators was 78%. Table 1 shows a detailed
summary of the human study results.

6.3. Analysis: Learning to Read With Weak Labels

For some of the images in Figure 10, such as the im-
age of the dental center (top row, second image from right)
it is surprising that the model was capable of classifying it
correctly. It is hard to think of a “canonical” dental cen-
ter look, but even if we could, it doesn’t seem likely that
this image would be it. In fact, without reading the text, it
seems impossible to correctly classify it. This suggests that
the system has learned to use text when needed. Figure 11
shows images from Figure 10 for which we have manually
blurred the discriminative text. Note especially the image of
the dental center, and of the auto dealer. After blurring the
test “Dental” the system is confused about the dental center;
it believes it is a beauty salon of some sorts. However, for
the auto dealer, it is still confident that this is a place that
sells things, and is related to transportation and automotive.
To take this experiment to its logical extreme, we also show
a synthetic image, which contains only the word Pharmacy.
The classifier predicts the relevant labels for it.

To us this is a compelling demonstration of the power of
Deep Convolutional Networks to learn the correct represen-
tation for a task. Similar to a human in a country in which
she does not know the language, it has done the best it can –
learn that some words are correlated with specific types of
businesses. Note that it was never provided with annotated
text or language models. It was only provided with what we
would consider as weak textual labels, images that contain
text and labeled with category labels. Furthermore, when
text is not available the system is able to make an accurate
prediction if there is distinctive visual information.

7. Discussion
Business category classification, is an important part of

location aware search. In this paper we have proposed a
method for fine grained, multi label, classification of busi-
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health & beauty .935 automotive .996 health & beauty .894
beauty .925 gas & automotive .996 beauty .891
cosmetics .742 shopping .995 cosmetics .800
beauty salon .713 store .995 beauty salon .799
hair care .527 transportation .985 hair .407

Liquor store McDonald’s

food & drink .833 food & drink .998 health & beauty .987
food .745 food .996 shopping .985
restaurant or cafe .717 restaurant or cafe .992 store .982
restaurant .667 restaurant .990 health .981
beverages .305 fast food restaurant .862 pharmacy .969

Figure 11. A number of images from Figure 10 with the discrimi-
native text in the image blurred (noted above the image). For some
images, without the discriminative word the algorithm is confused
(left column). For example, for the dental center, without the word
dental it predicts a beauty salon. For other images, there is enough
non textual information for the algorithm to be confident of the
business category even when the text is blurred, for example the
car dealership. Note the image of the nail spa: when the word nail
is blurred the classifier falls back to more generic classes that fit
the visual information - beauty salon, cosmetics, etc. As a final in-
dicator to the ability of the network to learn textual cues we show
a synthetic image where the only visual information is the word
pharmacy. The network predicts relevant labels.

ness storefronts from street level imagery. We show that
our system learned to extract and associate text patterns in
multiple languages to specific business categories without
access to explicit text transcriptions. Moreover, our system
is robust to the absence of text, and when distinctive visual
information is available, it is able to make correct predic-
tions. We show our system achieves human level accuracy.

Using an ontology of entities with geographical at-
tributes, we propagate label information during training,
and produce a large set of 1.3 million images for a fine
grained, multi label task. The use of non visual information,
such as an ontology, to “ground” image data to real world
entities is an exciting research direction, and there is much
that can be done. For example, propagating information us-
ing the ontology at test time can increase both accuracy and
recall. Node similarity in the ontology can be used to guide
feature sharing between classes, and improve performance
for seldom viewed classes.



finance .997 shopping .813 prof. services .998 automotive .999 health & beauty .992 beauty .997
bank or atm .994 store .805 real estate agency .995 gas & automotive .999 health .985 beauty salon .997
atm .976 construction .662 real estate .992 shopping .999 doctor .961 cosmetics .995
user op machine .975 home goods (s) .530 rental .453 store .999 emergency services .960 health salon .994
bank .948 building material (s) .300 finance .085 vehicle dealer .998 dentist .945 nail salon .953

telecommunication .826 shopping .923 shopping .920 laundromat .934 food & drink .947 automotive .999
cell phone (s) .796 store .908 store .916 cleaners .795 food .867 gas & automotive .999
shopping .627 food & drink .860 sporting goods (s) .625 prof. services .732 restaurant or cafe .722 repairs .999
store .627 food .849 sports .600 laundry .679 restaurant .621 prof. services .999
health & beauty .116 butcher shop .824 textiles .374 cleaning service .669 beverages .441 car repair .998

shoe store 1.00 car repair 1.00 cafe 1.00 food & drink 1.00 liquor store 1.00 food & drink .999
shoes 1.00 gas & automotive 1.00 beverages 1.00 food 1.00 beverages .999 food .998
store 1.00 automotive 1.00 restaurant or cafe 1.00 restaurant or cafe .999 shopping .998 restaurant or cafe .884
shopping 1.00 prof. services 1.00 food & drink 1.00 restaurant .999 store .998 restaurant .995
clothing .001 repairs 1.00 food 1.00 hamburger restaurant .936 food & drink .700 fast food restaurant .884

health .999 prof. services .999 prof. services .995 food & drink* .996 food & drink .825 shopping .932
health & beauty .999 real estate .996 company .982 food* .959 food .762 store .920
pharmacy .997 real estate agency .973 cleaning service .975 restaurant* .931 restaurant or cafe .741 florist .896
emergency services .996 rental .132 laundry .970 restaurant or cafe* .909 restaurant .672 fashion .077
shopping .989 consultant .029 dry cleaner .966 asian* .647 beverages .361 gift shop .071

prof. services .594 gas station .996 shopping .489 shopping .719 beauty .999 place of worship .990
legal services .346 transportation .996 store .467 store .713 health & beauty .999 church .988
lawyer .219 gas & automotive .995 prof. services .289 home goods (s) .344 cosmetics .998 education/culture* .031
insurance .129 government .001 services .246 furniture store .299 health salon .998 assoc./organization* .029
insurance agency .103 gastronomy .001 gas & automotive .219 mattress store .240 nail salon .949 prof. services .027

Figure 10. Top predictions for sample images from the test set. Predictions marked in red disagree with ground truth labels; in some cases
the classifier is correct and the ground truth label is wrong (marked with *). For example, see asian restaurant (fourth image from left, row
before last), for which the top 5 predictions are all correct, but do not agree with the ground truth. The mark (s) is an abbreviation for store.
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