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Range-weighted neighborhood filters, such as Yaroslavsky filter, bilat-
eral filter [6] and non-local means [2], are useful and popular for their edge-
preserving property and simplicity, but they are originally proposed as in-
tuitive tools. For understanding their properties, previous works needed to
connect them to other classical methods, e.g. mean shift [1], anisotropic
diffusion [3] and robust estimation [4]. However, these connections were
unable to provide further information to infer the range variance σ2

r directly
from the observed data. On the other hand, statistical techniques have been
adopted to estimate the parameters without reasoning the properties. Al-
though SURE-based methods [5, 7] can achieve high prediction accuracy,
the complexity is quite high because many filtering iterations are required.
In this paper, we build a unified empirical Bayesian framework to both infer
the neighborhood filters and estimate their range variance. We first introduce
a novel neighborhood noise model (NNM):

yi = zl +
nl,i√wl,i

, (1)

where zl is the latent signal at position l, yi are the observed signals in its
neighborhood Λl , and nl,i are additive white Gaussian noises (AWGN) of
covariance matrix σ2Ik. Especially, wl,i can model localized intensity edges
using soft decisions. Namely, a smaller wl,i means that yi is distributed more
widely and thus there is more likely an edge between positions l and i. For
inferring the Gaussian range-weighted kernel, wl,i 6=l are defined as white
hidden variables of a prior distribution:

fw(w;ε,α) =
1

N(ε,α)
w−k/2w−αweαw, w ∈ [ε,1], (2)

where N(ε,α) =
∫ 1

ε
w−k/2w−αweαw dw for normalization.

Then by minimizing the energy function Ll , we have

∂Ll
∂wl,i

= 0 ⇒ wl,i = e
−

g2
l,i

2σ2r , σ
2
r = ασ

2, (i 6= l) (3)

∂Ll
∂zl

= 0 ⇒ zl =
∑i∈Λl

wl,i ·yi

∑i∈Λl
wl,i

, (4)

where g2
l,i ,‖ zl − yi ‖2

2. Thus the Yaroslavsky filter is equivalent to the
first-iteration estimation for solving this fixed-point problem with an initial
condition z(0)l = yl . The above formulations can be further interpreted into
two sequential steps: 1) Maximum a posteriori (MAP) estimation for wl,i
in (3); 2) Maximum likelihood (ML) estimation in (4). By modifying the
likelihood function in the second step for considering proximity and patch
similarity, the bilateral and a modified non-local means filters can be derived
respectively.
We then present an iterative EM+ algorithm to perform the model fitting for
estimating the range variance σ2

r from noisy images. Let sl,i ,‖ yl−yi ‖2.
It is independent of zl and thus observable. It follows the chi scale mixtures
(CSM) formulation:

sl,i = σ

√
wl,i +1

wl,i
ul,i,ul,i ∼ χk, (5)

where ul,i is a chi distribution with k degrees of freedom. Then for any
given observed data set S, we can estimate the corresponding pdf fs(s) by
iteratively updating the model parameters (σ ,α,ε) based on the empirical
distribution P(s ∈ S). Each iteration of the EM+ algorithm consists of three
steps: EM update for (σ ,α), KLD update for ε , and Quasi-Newton (QN)
update for acceleration.

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.
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Figure 1: Bilateral filter test for Lena with noise intensity σn = 5 and 50.
The top row shows the model fitting of empirical distributions, and the bot-
tom presents the estimation accuracy.

We apply the proposed framework to the color-image denoising problem for
validating the effectiveness. Experimental results show that the proposed
model fits noisy images well and estimates σ2

r as accurate as SURE does.
Fig. 1 shows a typical example, and all the results can be browsed online1.
We also show that the model fitting even works for filtered images for which
the noise is no longer Gaussian. This useful property enables a recursive
filtering scheme which can further improve image quality. Therefore, the
advantage of the proposed framework over SURE is both computation-wise
and quality-wise because SURE is slow and fails for the filtered images.
The proposed framework can be used to build efficient filters for different
constraints automatically, instead of heuristic tuning. It can also be expected
that it will be applied to other range-weighted algorithms by formulating the
corresponding likelihood functions. Therefore, we believe that it will help
many computer vision problems be solved in an empirical Bayesian way,
instead of an intuitive way.
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