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Abstract

Range-weighted neighborhood filters are useful and
popular for their edge-preserving property and simplicity,
but they are originally proposed as intuitive tools. Previous
works needed to connect them to other tools or models for
indirect property reasoning or parameter estimation. In this
paper, we introduce a unified empirical Bayesian frame-
work to do both directly. A neighborhood noise model is
proposed to reason and infer the Yaroslavsky, bilateral, and
modified non-local means filters. An EM+ algorithm is de-
vised to estimate the essential parameter, range variance,
via the model fitting to empirical distributions. Finally, we
apply this framework to color-image denoising. Experimen-
tal results show that the proposed model fits noisy images
well and the range variance is estimated successfully. The
image quality can also be improved by a proposed recursive
fitting and filtering scheme.

1. Introduction
Range-weighted formulation has been widely used to

provide edge-preserved denoising since the introduction
of local neighborhood filtering, especially the Yaroslavsky
[28] and bilateral [23] filters. Many variations were also
proposed for different applications, such as the trilateral fil-
ter for high contrast images[6] and the cross bilateral filter
for fusing image pairs [20]. The reader is referred to [17]
for more applications. The non-local means (NLM) [2] was
further proposed for a non-local neighborhood and got fruit-
ful patch-based extensions on denoising.
The intuitive idea behind is to assign filter coefficients based
on similarity, e.g. the bilateral filter is given by

ẑl =

∑
i∈Λl

wl,idl,i · yi∑
i∈Λl

wl,idl,i
(1)

where y and ẑ are the observed and filtered signals re-
spectively, and Λl represents the neighborhood at posi-
tion l. The adaptive kernel consists of one range-weighted
wl,i = exp(−‖yl−yi‖

2
2

2σ2
r

) and one distance-weighted dl,i =

exp(−‖l−i‖
2
2

2σ2
d

). The former adapts to pixel similarity for
edge preservation, which is controlled by range variance
σ2
r . And the latter provides a spatial smoothing window.

If the spatial weights are all equal, it will degenerate to the
Yaroslavsky filter. On the other hand, it will evolve to the
NLM if wl,i is defined by patch similarity:

wl,i = exp(−
∑
b∈B ‖ yl+b − yi+b ‖22

2Bσ2
r

), B = |B|, (2)

where {yi+b|b ∈ B} forms the patch at position i.
Filtering based on range-weighted similarity is effective but
lacks of theoretical basis. For understanding its mathemat-
ical properties, several previous works studied their con-
nections to other classical methods, such as mean shift [1],
anisotropic diffusion [3] and Bayesian approach [8, 16], and
thus found improvements on the neighborhood filters. How-
ever, these connections were unable to provide further in-
formation to infer the range variance σ2

r directly from the
observed data.
In contrast, without reasoning the properties statistical tech-
niques have been adopted to estimate the parameters indi-
rectly using the basic observation model

y = z + n, (3)

where n is additive Gaussian noise. The χ2 test was used
to choose the parameters for the NLM filter in [11]. The
Stein’s unbiased risk estimate (SURE) [22] can provide un-
biased estimation of the mean squared error (MSE) from
noisy and filtered images. Thus many parameter combi-
nations can be tested, and the one giving the smallest esti-
mated MSE can be selected. Though accurate, the complex-
ity is quite high because each combination needs to filter the
whole image separately.
Contribution. In this paper, we build a unified empirical
Bayesian framework to both infer the neighborhood filters
and estimate their range variance. We first introduce a novel
neighborhood noise model. It reasons the range-weighted
formulation using maximum a posteriori (MAP) estima-
tion via a soft-edge prior and infers the filters using max-
imum likelihood (ML) estimation on different likelihood
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functions. We then present an EM+ algorithm to perform
the model fitting for estimating the range variance σ2

r from
noisy images. From the experimental results on color-image
denoising, we show that the proposed model fits noisy im-
ages well and estimates σ2

r as accurate as SURE does. The
advantage over SURE is also shown both computation-wise
and quality-wise when considering a proposed recursive fil-
tering scheme. We also believe that this framework can be
extended to other range-weighted algorithms for deeper the-
oretical understanding and better parameter estimation.

2. Related Work
Joint filter/parameter inference. In [21], a wavelet-

domain denoising algorithm was developed with the as-
sumption that the latent image z is Gaussian scale mixtures
(GSM) [26]. The adaptive parameters can then be statis-
tically inferred from the neighborhood. If detailed camera
information is available, [13] can perform noise estimation
and removal automatically. Not surprisingly, these filters
are different from the range-weighted ones. The PLOW fil-
ter [4] is equivalent to the NLM filter plus a residual filter.
Although the residual filter is based on the covariance ma-
trices inferred from geometric clusters, the range variance
was still given in a heuristic way. In this paper, we target
the joint inference for neighborhood filters.
SURE-based parameter estimation. The SURE-based
method gives the state-of-the-art accuracy for parameter es-
timation, and it is basically applicable to any parameter. It
needs to estimate the noise variance first, and one popular
method is by median absolute deviation (MAD). It has been
applied to the bilateral filter for grey [18] and multispec-
tral images [19] and also to the NLM filter [24, 25, 5]. A
fast implementation for the bilateral filter was also proposed
in [12], but several passes of filtering were still required.
For the SURE-based method to work well, two conditions
should be met: the Gaussian noise assumption and a differ-
entiable filter kernel on the noisy image y. In this paper, the
model fitting itself is only able to estimate the range vari-
ance. However, we will show its applicability to two cases
in which the SURE-based method would fail. One is re-
cursive filtering for which the noise is no longer Gaussian.
The other one is for the NLM filters which use motion es-
timation to select candidate patches such that the kernel is
dynamic and thus indifferentiable on y.
Image denoising. Several types of approaches have been
studied, including local-based [28, 23], transform-based
[21, 27], nonlocal-based [2, 4], and sparsity-based (e.g.
BM3D [7], NLSM[14] and WNNM[9]). The last one
showed superior image quality recently, which was based
on grouping with patch similarity and optimization for
sparse representation. However, the parameters are mostly
given heuristically. Besides, they were often proposed and
optimized for grey images, and additional modification is

required to support color channels. In contrast, our method
can work on multi-channel signals directly.

3. Noise Model and Bayesian Inference
We will first propose a novel noise model and infer the

Yaroslavsky filter directly from it. By modifying the likeli-
hood function to improve the robustness of estimation, we
will then infer the bilateral filter and a modified NLM filter.

3.1. Neighborhood noise model (NNM)

For a latent k-channel signal zl at position l, we formu-
late its neighbors yi∈Λl by GSM to model localized inten-
sity edges using soft decisions:

yi = zl +
nl,i√
wl,i

, (4)

where nl,i are additive white Gaussian noises (AWGN) of
covariance matrix σ2Ik and wl,l = 1 as the basic model.
For the neighboring pixels, a smaller wl,i means a more
widely distributed yi, so there is more likely an edge be-
tween positions l and i. Otherwise, smooth texture will be
inferred if wl,i is close to one. To infer the Gaussian range-
weighted kernel in (1), wl,i6=l are defined as white hidden
variables of a prior with two parameters ε and α:

fw(w; ε, α) =
1

N(ε, α)
w−k/2w−αweαw, w ∈ [ε, 1], (5)

where N(ε, α) =
∫ 1

ε
w−k/2w−αweαw dw for normaliza-

tion, α will link σ2 to σ2
r , and non-zero ε can guarantee the

convergence of the integration for k ≥ 3.

3.2. Inference for Yaroslavsky filter

Given observed data yi, we have the posterior Φl ∝
p(yl; zl)

∏
i∈Λl,i6=l p(yi|wl,i; zl)fw(wl,i). Its energy func-

tion Ll can then be derived:

Ll =
g2
l,l

2σ2
+
∑
i6=l

wl,ig
2
l,i

2σ2
− logw

k
2

l,i − log fw(wl,i), (6)

where g2
l,i ,‖ zl − yi ‖22. The estimation for wl,i and zl

can be derived by minimizing Ll:

∂Ll
∂wl,i

= 0 ⇒ wl,i = e
−
g2
l,i

2σ2
r , σ2

r = ασ2, (i 6= l) (7)

∂Ll
∂zl

= 0 ⇒ zl =

∑
i∈Λl

wl,i · yi∑
i∈Λl

wl,i
. (8)

The Yaroslavsky filter is then equivalent to the first-iteration
estimation for solving this fixed-point problem with an ini-
tial condition z

(0)
l = yl.

The NNM estimation (7) and (8) can be further interpreted
into two sequential steps respectively:



1. Independent MAP estimation for each wl,i by maxi-
mizing p(yi|wl,i; zl)fw(wl,i) when given a fixed zl;

2. ML estimation for zl by optimizing the likelihood

Lz(zl) =
g2
l,l

2σ2 +
∑
i 6=l

wl,ig
2
l,i

2σ2 when given fixed wl,i.

By modifying the likelihood function in the second step for
considering proximity and patch similarity, the bilateral and
NLM filters can be derived respectively as follows.

3.3. Extension for bilateral filter

To consider proximity in a nonparametric way using the
Gaussian weighting kernel dl,i, the locally weighted maxi-
mum likelihood (LWML) [15] can be applied to the likeli-
hood Lz to have the pseudo likelihood function

L̃z(zl) = dl,l ·
g2
l,l

2σ2
+
∑
i 6=l

dl,i ·
wl,ig

2
l,i

2σ2
. (9)

Then the LWML estimation by ∂L̃z
∂zl

= 0 gives the same
formulation as the bilateral filter.

3.4. Extension for NLM filter

The corresponding NNM for each latent pixel in a patch
{zl+b, b ∈ B} and its neighborhood Λl+b is as defined in
(4). The first-iteration MAP estimation for each soft-edge
variable then gives

wl+b,i+b = e
−
‖yl+b−yi+b‖

2
2

2σ2
r , i ∈ Λl. (10)

Let the column vectors of the latent patch and the observed
patches be Zl and Yi∈Λ. They are formed by cascading
zl+b and yi+b respectively in a predefined order Υ for b ∈
B. Then the partial likelihood from Yi becomes

L(Zl; Yi) = G(Zl; Yi,Σl,i), (11)

where G(·;µ,Σ) is a multivariate Gaussian function, and
the diagonal entries of Σl,i are formed by cascading
diag( σ2

wl+b,i+b
Ik) in the predefined order Υ. The entries out-

side of the diagonal have no effect on the following deriva-
tion.
For NLM filtering, one observed patch Yi has only one
summation weight Wl,i. Thus we use a patch-based like-
lihood function to approximate (11), which is devised as

L̃(Zl; Yi) = G(Zl; Yi,
σ2

Wl,i
IkB). (12)

Since these two likelihood functions both behave like prob-
ability density functions (pdf), we choose Wl,i by minimiz-
ing the Kullback-Leibler divergence (KLD) between them:

DNLM , DKL(L ‖ L̃) = −
∫
L log

L̃
L
dZl, (13)

∂DNLM
∂Wl,i

= −
∫
L
(
kB

2

1

Wl,i
− ‖ Zl −Yi ‖22

2σ2

)
dZl

= −

(
kB

2

1

Wl,i
− 1

2

∑
b∈B

k

wl+b,i+b

)
= 0, (14)

⇒Wl,i =

(∑
b∈B

w−1
l+b,i+b/B

)−1

. (15)

Then the ML estimation for the combined patch-based like-
lihood functions

∑
i∈Λ L̃(Zl; Yi) becomes

Zl =

∑
i∈Λl

Wl,i ·Yi∑
i∈Λl

Wl,i
, (16)

which suggests a modified NLM (MNLM) filter with the
coefficients Wl,i in (15). Note that Wl,i is the harmonic
average of wl+b,i+b, while the conventional NLM uses the
geometric average as shown in (2).

4. Model Fitting and Parameter Estimation
In the following, we will first introduce how to build

a robust observation model in chi scale mixtures and then
how we fit the model using an expectation-maximization-
plus (EM+) algorithm.

4.1. Observable chi scale mixtures (CSM)

Let sl,i ,‖ yl − yi ‖2. It is independent of zl and with
the CSM formulation:

sl,i = σ

√
wl,i + 1

wl,i
ul,i, ul,i ∼ χk, (17)

where ul,i is a chi distribution with k degrees of freedom.
For simplicity, we use s = sl,i and w = wl,i in the follow-
ing. The marginal pdf of s can be derived by

fs(s;σ, ε, α) =

∫ 1

ε

fs,w(s, w;σ, ε, α) dw, (18)

fs,w =
1

T (ε, α)

sk−1σ−k

(w + 1)
k
2

e−
w
w+1

s2

2σ2 w−αweαw, (19)

where fs,w is the joint pdf of s and w, and T (ε, α) =

2
k
2−1Γ(k/2)N(ε, α) for normalization.

Fig. 1 shows how the soft-edge prior fw(w) and the CSM
pdf fs(s) behave with different α and ε. fw(w) represents
how likely intensity edges appear, i.e. more small w for
more edges. For smaller α or ε, fw(w) tilts more to the
left and fs(s) has a longer tail such that more edges are ex-
pected. For larger α or ε, fw(w) concentrates more on the
right, and fs(s) gets closer to a chi distribution. Thus we
can model noisy images by varying α and ε to fit different
image properties and varying σ for different noise intensity.
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Figure 1. Distributions of the soft-edge w and the observable chi
scale mixtures s with different values for α and ε (k = 3).

Another advantage to define s in l2-norm is its robustness.
When the components of yi are not independent in the ob-
served color space, e.g. RGB, we may apply an orthogo-
nal transform to diagonalize their covariance matrix Σy for
decorrelation. However, since the l2-norm is invariant to
the orthogonal transform, we can calculate s (and w) in the
observed color space without performing the decorrelation.
Thus the model fitting (and the filtering) can be applied on
the observed yi directly without loss of optimality.

4.2. EM+ algorithm for CSM fitting

Given an observed data set S, its empirical distribution
is defined by P (s ∈ S). Then we estimate the correspond-
ing pdf fs(s) by iteratively updating the model parameters
based on P (s). Assume in the previous iteration the esti-
mated parameters are σ, α, and ε. Our EM+ algorithm up-
dates them to σ̃, α̃, and ε̃ through the following three steps:
EM update, KLD update, and Quasi-Newton (QN) update.

4.2.1 EM update: (σ, α, ε)⇒ (σ̂, α̂, ε)

For simplicity, we will ignore the σ, α, and ε in fs,w and
fs if the parameters in the previous iteration are used. The
expected value of the log likelihood function can be derived
as Q(σ̂, α̂|σ, α) =

∑
j P (sj)q(sj , σ̂, α̂|σ, α) where

q(s, σ̂, α̂|σ, α) =

∫ 1

ε

p(w|s)LEM (σ̂, α̂, ε;w, s) dw, (20)

p(w|s) = fs,w/fs, LEM = log fs,w(s, w; σ̂, ε, α̂). (21)

Set ∂Q∂σ̂ = ∂Q
∂α̂ = 0 to have the EM update for σ̂ and α̂:

σ̂2 =
1

k

∑
j

P (sj) ·
∫ 1

ε
fs,w(sj , w)s2

j
w
w+1 dw

fs(sj)
, (22)

H(α̂, ε) =
∑
j

P (sj) ·
∫ 1

ε
fs,w(sj , w)w(1− logw) dw

fs(sj)
,

(23)

where H(α̂, ε) , Ew;α̂,ε[w(1 − logw)] and it is an in-
creasing function with respect to α̂ because ∂H/∂α̂ =
Varw;α̂,ε[w(1 − logw)] = 0. Thus the corresponding α̂
can be found quickly using a bisection search on H(α̂, ε).

4.2.2 KLD update: (σ̂, α̂, ε)⇒ (σ̂, α̂, ε̂)

The EM algorithm is unable to update ε because the sup-
port of w for p(w|s) and LEM in (20) should be the same.
Instead, we update it by optimizing the approximate KLD
D =

∑
j −P (sj) · log

fs(sj ;σ̂,ε,α̂)
P (sj)

. With ∂D
∂ε = 0, a fixed-

point representation of the optimal ε can be derived. And we
use the first-iteration result with an initial condition ε̂(0) = ε
as our updating formulation:

(
ε̂+ 1

ε̂

) k
2

=
∑
j

P (sj) ·
sk−1
j σ̂−ke−

ε
ε+1

s2j

2σ̂2

2
k
2−1Γ(k2 )fs(sj ; σ̂, ε, α̂)

. (24)

4.2.3 QN update: (σ̂, α̂, ε̂)⇒ (σ̃, α̃, ε̃)

The update formulations in (22), (23), and (24), require nu-
merical evaluations for lots of integrals, which prolongs the
execution time for one iteration. Besides, we found that
the update step sizes are usually small near the optimizing
point, which increases the number of iterations. Thus the
above updates take a long time to converge in many cases.
We adopt the QN method, QN1 in [10], to accelerate the
fitting process. Let θ = (σ, α, ε)T , θ̂ = (σ̂, α̂, ε̂)T , θ̃ =

(σ̃, α̃, ε̃)T , and F(θ) = θ̂(θ)− θ. The QN1 method solves
F(θ) = 0 by maintaining a matrix A which approximates
the inverse Jacobian matrix J−1

F and is updated using the
Broyden’s update method. Then the QN update is derived
by θ̃ = θ + δ where

δ = −A · F(θ). (25)

However, in practice the QN update could be unstable when
A has a high condition number. Some heuristic, e.g. reini-
tializing A, is required in this situation. We choose to con-
fine θ̃ in a reasonably large range Ψ for its quick conver-
gence. When θ̃ is out of Ψ, we will directly set δ to F(θ)
as the original EM/KLD update and may further scale down
its value to make θ̃ inside Ψ if necessary.

4.3. Discriminative capability of KLD

The fitting quality relies on the discriminative capability
of KLD between different parameters. Fig. 2 shows the
KLD discrimination of fs(s) for k = 3 when α has a small
change4α = 0.5 and when ε increases by4ε = 0.005. It
is clear that the discriminative capability declines as α or ε
increases. For sufficiently large α or ε, fs(s) is very similar
to a chi distribution and KLD becomes insensitive to the
parameters. Therefore, some upper bounds for α and ε may
be chosen without compromising KLD.



5. Application in Image Denoising

For the inferred filters, each neighborhood can be viewed
as a realization of the NNM. Thus the CSM model fitting
can provide parameter estimation. In the following, we will
apply this approach to color-image denoising (k = 3).

5.1. Parameter estimation

Before model fitting, we need to derive the empirical dis-
tribution P (s). For the Yaroslavsky filter, we have a fixed
neighborhood Λl for each pixel, and P (s) can be simply
obtained by accumulating the histogram of all sl,i. For the
bilateral filter, we construct its P (s) by accumulating the
histogram with the spatial weight dl,i to consider proxim-
ity. For example, the frequency of s = 2 will be increased
by dl,i for an event sl,i = 2. For the MNLM filter, we
consider a dynamic neighborhood Λl which may depend on
patch similarity sorting or hard thresholding for better per-
formance. In this case, we need to do the computation to
derive Λl and then accumulate the histogram of sl+b,i+b.
Given P (s), we perform the CSM fitting using the EM+
algorithm and select the final result based on the KLD cal-
culated for P (s) and the estimated distribution P̃ (s;θ(m))
in each iteration. Besides, we also devise an ε-bounded
estimation to handle the KLD insensitivity issue. It is ac-
tivated when ε is close to a given upper bound εbd, i.e.
|ε−εbd| < 4ε. Since the sensitivity of KLD becomes small
when ε is near εbd, we can directly compare KLD through
ε = εbd using a bisection search on α. For each α, the σ-
update (22) which converges very quickly is used to find the
best corresponding σ and KLD.
The algorithm parameters which are fixed in this paper are
as follows: maximum fitting iteration M = 15, initial CSM
parameter θini = ( smd2 , 3, 10−3) where smd is the mode
of P (s), ε-bound criteria4ε = 10−3, and parameter range
Ψ = {θ|σ = 10−5, α ∈ [3, 15], ε ∈ [10−5, εbd]}. The con-
vergence condition is that the KLD is smaller than 10−5 or
σ2
r changes by less than 0.1%. Note that Ψ is used to avoid

unstable QN updates and is defined sufficiently large such
that only seldom final results touch the boundaries. The
only exception is εbd which can be used to activate the ε-
bounded estimation.

5.2. Recursive local filter

It is shown that the conventional Yaroslavsky/bilateral
filter is equivalent to the first-iteration MAP/ML estima-
tion. Simply applying more iterations with the same σ2

r in-
deed reduces the energy function (6) but does not help for
increasing PSNR. Instead, we propose to apply the model
fitting and filtering recursively. Each iteration estimates
the NNM parameters for the current noisy image ŷ(m) and
performs filtering on it with the estimated range variance
σ̂

2(m)
r . This process is terminated when the filter iteration

exceeds Mflt times or the estimated noise intensity σ̂(m) is
smaller than a threshold σcl which represents a clean image.

5.3. Recursive MNLM filter

The proposed recursive MNLM filter has three differ-
ences from the recursive local one. First, the basic process-
ing unit becomes a patch, instead of a pixel, and a flag bag
decides how to aggregate these patches into one image. If
bag = 1, each image pixel at position l will be derived by
averaging all its corresponding values in neighboring esti-
mated patches X̂l+b, b ∈ B. Otherwise, no aggregation will
be performed. Second, the neighborhood for each patch is
constructed dynamically based on some given constraints.
Third, a DCT-Wiener filter is introduced to increase the per-
formance, which is activated by a flag bdct.
The DCT-Wiener filter serves similarly as the residual filter
in PLOW. We use the DCT, denoted as T (·), to approxi-
mate the decorrelation matrix and then apply element-wise
Wiener filtering to update the patch X̂l

X̂l ← T −1(Wwie ◦ T (X̂l)), (26)

where the element of the shrinkage matrix Wwie is

(Wwie)i′j′k′ =
σ̂2
X,i′j′k′

σ̂2
X,i′j′k′ + σ̂2

l

, (27)

and the signal variance is estimated from neighbors by
σ̂2
X,i′j′k′ = Ei∈Λl [(T (Ŷ

(m)
i ))2

i′j′k′ ] − σ̂2(m) and the noise

variance by σ̂2
l = σ̂2(m)∑

i∈Λl
Wl,i

due to weighted averaging.

The recursive MNLM filter is summarized in Algorithm 1.

Algorithm 1 Recursive MNLM Filter
Input: Noisy image y; ε-bound εbd; DCT-Wiener flag bdct;

Aggregation flag bag
Output: Denoised image ẑ

1: Initialize ŷ(1) = y, ẑ = y, m = 1
2: repeat
3: Get empirical P (s) of ŷ(m) by constructing each Λl
4: Get σ̂(m)

r , σ̂(m) using parameter estimation
5: if (σ̂(m) ≥ σcl) then
6: for each patch Yl in ŷ(m) do

7: Get the estimation X̂l =
∑
i∈Λl

Wl,i·Ŷ(m)
i∑

i∈Λl
Wl,i

8: Perform DCT-Weiner filtering with bdct
9: end for

10: Aggregate X̂l to form ẑ(m) with bag
11: ŷ(m+1) ← ẑ(m), ẑ← ẑ(m)

12: end if
13: m← m+ 1
14: until (m > Mflt) or (σ̂(m) < σcl)
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6. Experiments on Model Fitting and Filtering
6.1. Parameter setting

Six filter configurations are tested:

1. YF-5×5: Yaroslavsky filter, Λ: 5×5, εbd = 0.1/1.0;

2. YF-9×9: Yaroslavsky filter, Λ: 9×9, εbd = 0.1/1.0;

3. BF-9×9: Bilateral filter, Λ: 9×9, εbd = 0.1/1.0;

4. BF-13×13: Bilateral filter, Λ: 13×13, εbd = 0.1/1.0;

5. MNLM-Simple: MNLM filter, εbd = 0.1, bdct = 0
(DCT-Wiener off), bag = 0 (no aggregation);

6. MNLM-DCT: MNLM filter, εbd = 1.0 (ε-bound off),
bdct = 1 (DCT-Wiener on), bag = 1 (one-pixel grid).

Two settings of εbd are tested for local filters. The basic
εbd = 1.0 simply follows the definition in (5). In contrast,
the empirical εbd = 0.1 will use the ε-bounded estimation
for large ε. The spatial weight of bilateral filters σd is set to
the radius of Λ, e.g. σd = 4 for Λ = 9×9. The patch size for
the MNLM filter is 9 × 9. For constructing MNLM neigh-
borhood, we apply motion estimation in a 31 × 31 search
window around position l and choose the best ten candi-
dates as Λl. For filter termination, the maximum iteration
number Mflt is set to 3 and σ2

cl set to 10.
To obtain the best σ2

r and the SURE estimation for compar-
ison, we perform a σ2

r scan (30 values) from α = 0.5 to
25.0 for each test condition. The SURE-based method uses
the noise variance σ2

MAD estimated by MAD as done in [4]
and is denoted as MAD+SURE. Twelve standard color im-
ages of different properties are used in our experiments with
AWGN of five different intensity values of σn.

6.2. Yaroslavsky/Bilateral filter

Fig. 3 shows one typical example of the test results. The
results for other test filters and test images can be browsed
online1. The CSM model can fit the long-tailed empirical

distributions well no matter when the noise is small or large.
It also successfully predicts that α should become larger
as the noise intensity σn increases, while the conventional
heuristics usually apply a fixed value.
Table 1 lists the result of BF-9×9 (εbd = 0.1) in de-
tail. MAD+SURE fails in two cases. One is for small σn
(e.g. σn=5, 1st iteration) due to the inaccuracy of σ2

MAD.
The other one is for iterations after the first iteration (e.g.
σn=50, 2nd iteration) because the noise is not Gaussian any
more. In contrast, the CSM estimation performs well in
terms of both PSNR and σ2

r accuracy in these two cases.
It means that the edge information can be well captured
by the CSM model even when the noise is small or be-
comes non-Gaussian. This useful property also enables
the proposed recursive scheme. Besides, in other cases
the CSM estimation shows similar performance compared
to the MAD+SURE. An interesting property can also be
found. The CSM estimation usually underestimates the
noise variance σ2, which means it may mistake noises for
edges. In contrast, the MAD+SURE tends to overestimate
because the MAD may mistake edges for noises.
The execution time is also shown in Table 1. The proposed
method runs much faster than the MAD+SURE since it does
not require a σ2

r scan. Each iteration of it consists of three
steps: getting P (s), CSM fitting, and filtering. The first and
third steps take time proportionally to the image resolution
and filter support size (7.9 s and 6.5 s on average respec-
tively). In contrast, the fitting time depends on the EM+
iteration numbers and whether the ε-bounded estimation is
turned on. For larger noises, the fitting tends to be insen-
sitive to KLD, and thus more time is required, e.g. 9.6 s
on average for σn = 50 (1st iteration) while only 3.5 s for
σn = 5. The percentage of the fitting time will be smaller
for larger images. Note that MAD+SURE not only fails to
predict in the recursive iterations but also requires signifi-
cantly higher computation complexity due to the σ2

r scan.
The test results of Yaroslavsky and bilateral filters are sum-
marized in Table 2. For εbd = 0.1, the CSM estimation
performs comparably to the SURE in the first iteration for
large σn and outperforms for small σn. Moreover, the pro-
posed recursive fitting and filtering can increase PSNR by
up to 1.2 dB. As for εbd = 1.0, its first-iteration results are
not as good as εbd = 0.1 for its less accurate σ2

r estima-
tion and higher KLD (due to KLD insensitivity). However,
the recursive filtering can recover its quality drop and even
make it slightly better than εbd = 0.1 with a little more
iterations. Therefore, the basic εbd = 1.0 gives slightly bet-
ter quality when using recursive filtering, but the empirical
εbd = 0.1 may be preferred when only one or fewer itera-
tions are allowed. The choice of σ2

r affects the performance
much more sensitively than that of Λ and dl,i, which also
justifies the need of a good σ2

r estimator.

1http://www.ee.nthu.edu.tw/chaotsung/nnm

http://www.ee.nthu.edu.tw/chaotsung/nnm
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Figure 3. BF-9×9 (εbd = 0.1) for Lena with σn = 5, 20, and 50. The top row shows the model fitting of empirical distributions. The
bottom row presents the filtered results, where the best σ2

r is marked by a circle, CSM estimation by a cross, and MAD+SURE by a triangle.

Table 1. Detailed result for BF-9×9 (εbd = 0.1). 4PSNR is calculated by comparing the PSNR to the best result derived by the σ2
r scan,

and so as4σ2
r which is presented in form of relative percentage, i.e.

σ2
r−σ

2
r,best

σ2
r,best

. The execution time is evaluated by running MATLAB on

a 3.4 GHz CPU (single-thread).

6.3. MNLM filter

The test results are summarized in Table 3. The MNLM-
Simple is directly inferred from the patch-based NNM vari-

ation, and the CSM estimation can track the σ2
r well for dif-

ferent σn and in different iterations. The recursive MNLM-
Simple filter can increase PSNR by up to 3.9 dB. On the
other hand, the MNLM-DCT can provide better PSNR due



Table 2. Summary for Yaroslavsky/Bilateral filters. The numbers
represent the corresponding averages for the twelve test images.
4PSNR here is calculated by comparing the PSNR to the best
first-iteration result. |4σ2

r | presents the relative percentage of ab-
solute difference. m̄ stands for the average number of iterations.
The results of εbd = 0.1/1.0 differ only for σn = 40/50.

to the use of DCT-Wiener filtering, and it also terminates
earlier. Though less accurate, the CSM fitting still provides
good estimation of σ2

r for it. Note that the MAD+SURE
cannot be applied here because the neighborhood is dynam-
ically derived. For comparing the conventional NLM and
MNLM, we also tested NLM in form of (2) using a σ2

r

scan. Its best PSNR differs by less than 1% compared to
MNLM-Simple, which indicates NLM and MNLM have
similar performance.
Two state-of-the-art denoising algorithms, CPLOW [4] and
CBM3D [7] (”C” stands for the versions for color images),

are also tested for comparison. The MAD-derived noise
variance σ2

MAD is used for them, and all other parame-
ters are set as default in the software provided by their au-
thors. The CBM3D performs best due to the processing
in sparse representation and the good heuristic parameters.
Our MNLM-DCT outperforms the CPLOW, though shar-
ing a similar flow. Besides the CSM parameter optimiza-
tion, one other reason is that the CPLOW processes color
channels separately while we consider all channels jointly.

7. Conclusion
In this paper, we propose and study a unified framework

which can both infer the neighborhood filters and estimate
the range variance. With the neighborhood noise model, we
show that the Yaroslavsky, bilateral, and MNLM filters can
be derived by joint MAP and ML optimization. We also
present an EM+ algorithm for parameter estimation via fit-
ting the observable CSM. The experimental results on color-
image denoising show the effectiveness. The noisy images
can be fit well and the range variance can be tracked as ac-
curate as the multi-pass SURE-based method. Moreover,
the CSM fitting also works for filtered images, and this en-
ables a recursive filtering scheme and improves PSNR.
The proposed framework can be used to build efficient
filters for different constraints automatically, instead of
heuristic tuning. It can also be expected that it will be ap-
plied to other range-weighted algorithms by formulating the
corresponding likelihood functions. Therefore, we believe
that it will help many computer vision problems be solved
in an empirical Bayesian way, instead of an intuitive way.
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Table 3. Summary of test results for MNLM filters. 4PSNR1 and4PSNR2 are relative to the first-iteration and the second-iteration best
PSNR respectively. The case of |4σ2

r | is similar. The results of CPLOW and CBM3D are given for reference.
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