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Recently, there have been many proposals [2, 5] with state-of-the-art results

in subspace clustering [3] that take advantages of the low-rank or sparse

optimization techniques [4]. These methods are based on self-expressive

models, which have well-defined theoretical aspects. They produce matri-

ces with (approximately) block-diagonal structure, which is then applied to

spectral clustering. However, there is no definitive way to construct affinity

matrices from these block-diagonal matrices and it is ambiguous how the

performance will be affected by the construction method.

In this paper, we propose an alternative approach to detect block-diagonal

structures from these matrices. The proposed method shares the philoso-

phy of the above subspace clustering methods, in that it is a self-expressive

system based on a Hadamard product of a membership matrix, which fre-

quently appears in correlation clustering [1]. A membership matrix M is

a symmetric matrix whose elements are either one or zero, which can be

transformed into a block-diagonal matrix by permuting the same indices of

rows and columns. It can be shown that a matrix is a membership matrix

if and only if it is a matrix of ones and zeros with diagonal elements being

ones and is PSD.

If W is a clean block-diagonal matrix without any error and M is a

membership matrix whose all-one block locations are identical to those of

diagonal blocks of W, then obviously

W = W⊙M, (1)

where ⊙ is the Hadamard product. Since there is a trivial solution M = 11
T ,

and there can be errors in W, we consider the following alternative problem:

min
M

‖W−W⊙M‖1 +λM‖M‖2, s.t. M ∈M, (2)

where M is the set of membership matrices. Here, we use the entry-wise l1-

norm for W−W⊙M to handle outliers. However, this problem is NP-hard

because it has both discrete and PSD constraints, so we relax them as

diag(M) = 1, M � 0, M ≥ 0, (3)

where � and ≥ are semidefinite and element-wise inequality, respectively.

Based on this relaxation, (2) becomes a convex problem which can be effi-

ciently solved by an augmented Lagrangian method [4]. The solution M̆ is

a boosted version of W that emphasizes the block-diagonal structure.

Even though M̆ might be better than W to apply spectral clustering, we

still do not know the number of clusters. To resolve this issue, we transform

the representation to a normalized membership matrix [6], which is a variant

of the membership matrix. A normalized membership matrix F is similar to

a membership matrix, except that the cluster blocks are filled with 1
nk

instead

of ones, where nk is the number of samples in the kth cluster. It can be shown

that a matrix is a normalized membership matrix if and only if it is doubly

stochastic, i.e., F1= F
T

1= 1 and is an orthogonal projection, i.e., F
2 = F =

F
T . One of the important properties of a normalized membership matrix is

that it has eigenvalues either one or zero, thus the sum of eigenvalues is

identical to its rank, i.e., the number of clusters. Therefore, it can be more

reliable in estimating the number of clusters.

In order to transform M̆ to a normalized membership matrix, we utilize

the equation (1) conversely: In an ideal case where M̆ ∈ M, it is obvious

that

F = F⊙M̆, (4)

where F is the normalized membership counterpart of M̆. To avoid a trivial

solution F = I, we need a regularization term ‖F‖∗ = tr(F). Since ‖(11
T −

M̆)⊙F‖1 has a different scale with tr(F), we instead minimize tr(F) with
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Figure 1: A typical example of the intermediate results of the proposed

algorithm (Hopkins155, K = 2, n = 276).

a constraint ‖(11
T − M̆)⊙F‖1 ≤ c, where the constant c is decided based

on H. Since handling a normalized membership matrix is also difficult, we

may relax the constraint to make it tractable as

min
F

tr(F), s.t. F ≥ 0, F1 = 1, F � 0, ‖H⊙F‖1 ≤ c. (5)

The solution F̆ of the above problem can be considered as a doubly

stochastic normalization [6] of M̆, which is more appropriate for spectral

clustering. In performing spectral clustering on F̆, we do not need the nor-

malization step of the normalized cut, because our affinity matrix is already

doubly stochastic. Since all the eigenvalues of F̆ are in between zero and

one regardless of the input data, it can be more reliable to infer the num-

ber of clusters from F̆ than from W
′. In our experiments, we just counted

the eigenvalues above 1
2 to estimate K. We observe that in many cases, F̆

is indeed very close to a normalized membership matrix, as shown in Fig.

1(d).

The details of the optimization procedure is described in the paper. Fig-

ure 1 shows the intermediate results of the proposed algorithm, which can

give a general sense of the method. MR showed better or at least similar re-

sults than the plain spectral clustering approach in our experiments. In sum-

mary, MR can act as a robust post-processing step for subspace clustering.

It depends much less on the characteristics of the data than the combination

of a heuristic estimator and the normalized cut, and gives a more reliable

form to estimate the number of clusters.
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