
A Linear Least-Squares Solution to Elastic Shape-from-Template

Abed Malti1, Adrien Bartoli,2 Richard Hartley3

1Fluminance/INRIA, Rennes, France. 2ALCoV/ISIT, UMR 6284 CNRS/Université d’Auvergne, Clermont-Ferrand, France.
3Australian National University and NICTA, Canberra, Australia

Method Deformation Time Acc Noise Init/params

Isometric Conformal Elastic

analytic-GbM-[2] + + − + − − +

non-linear-GbM-[3] + + − − + + −
non-linear-MbM-[4] + + + − + + −
sequential-MbM-[1] + + + + − + −

linear-MbM-Proposed + + + + + + +

Table 1: Strong (+) and weak (-) points of state-of-the-art physics-based
SfT methods. GbM stands for geometric method and MbM for mechanical
methods. Time is the computational cost. Acc is the accuracy of the method
to recover the deformed shape. Noise is the sensitivity of the method to
image noise. Init/params tells if the method requires an initial shape or
hyper-parameters (-) or not (+). Isometric SfT methods are limited to iso-
metric deformations and are not mentioned.

SfT (Shape-from-Template) is to reconstruct a 3D deformed surface from
its image, a 3D shape template and some priors among the physics or the
statistics which rule the deformation. In physics-based priors, the geomet-
ric and mechanical priors are the most used. This paper uses the latter one.
While geometric priors tend to use invariant measures between deforma-
tions, mechanical priors represent the physics that rules the deformation.
Such methods have the potential for real applications since they address a
wider class of deforming objects such as organs, tissues and other elastic
objects.

Current geometric/mechanical SfT methods suffer from caveats that are
summarized in table 1. First, the types of deformations: geometric ap-
proaches [2, 3] may not behave well when the prior is not fulfilled by the
deformation, while mechanical methods [1, 4] cover a larger range of defor-
mations (such as linear elasticity). Second, the tradeoff between accuracy
and speed of estimation. Analytical solutions [2] are fast but with lower ac-
curacy. Non-linear optimization methods [3, 4] are more accurate but at a
higher computation cost. Moreover, their accuracy depends on the initializa-
tion and on some hyper-parameters. Methods based on Kalman filtering [1]
also require an initialization step besides the fact that errors may accumulate
over the considered time frame. In summary, physics-based approaches lack
a method which is (i) able to exploit the mechanical constraints to cover a
large deformation range, (ii) robust to noise, and (iii) both accurate and fast.
Developing such a method is the main goal of this work. The answer we pro-
pose is to use mechanical constraints into a linear least-squares estimation
framework.

We use finite elements (FEM) to represent the surface and the defor-
mation. This is particularly adapted to SfT and fits the problem we want
to solve. Indeed, only the finite discrete set of point correspondences has a
natural boundary condition through the RBC (Reprojection Boundary Con-
straint). Any other point of the surface is free from boundary conditions and
is only subject to the physical prior. Thus, we use the finite set of correspon-
dences as nodes of the elements (triangles). Each element is subject to the
mechanical laws that rule the deformation. We use a weak formulation of
these laws to derive a linear relation (via the stiffness matrix) between the
displacement of the nodes and the external deforming forces. The assembly
of all elementary matrices reconstruct the global stiffness matrix that links
the global external deforming force to the global deformation δX. We fur-
ther constrain the problem with a set of SBC (Solid Boundary Constraints)
to rigidly position the template in the deformed image. Minimizing this
force subject to the RBC and SBC is a linear least-squares problem that can
be solved very efficiently.

Let n be the number of point correspondences. We propose to formalize
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Figure 1: New formalization of the physics-based SfT. The displacement
field at the solid boundary point is the zero 3-vector.

SfT as follows: find the 3D displacement field (X,δX) ∈R3n×R3n, where:
(i) δX minimizes the norm of the applied forces for the deformation, (ii) X+
δX satisfies the RBC, and (iii) X is a rigid positioning of the template shape
in the deformed frame thanks to the SBC. See figure 1 for an illustration.
Formally speaking, finding (X,δX) involves two main steps:

1. Find X from X0 with a PnP method applied to the solid boundary
points of SBC. X0 is the template pose in the world coordinate frame.

2. Find δX such that:

min
δX∈R3n

1
2
‖KδX ‖2 s.t.

{
PδX = b RBC
SδX = 0 SBC

(1)

Matrix K is the stiffness matrix of size 3n×3n. Note that f = KδX is thus
the vector of external forces to be minimized. P is an n-block diagonal ma-
trix of dimension 2×3 per block. P and b enforce the fact that the n points
must lie on the sightlines that pass through the n corresponding points in the
deformed image. S is an m×3n sparse matrix. It adds m depth displacement
constraints which together with the corresponding 2m equations of RBC set
the m solid boundary points. In the paper, we describe how to compute K
and we show that if it is full rank, then there exists a unique solution to this
problem.

In the paper, we test the proposed method on a various deformations
using synthetic and real datasets. We compared the obtained results to the
methods referenced in table 1. Our conclusion, is that the linear formulation
together with mechanical priors covers a large panel of deformations and
brings efficiency in both computation cost and accuracy.
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