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Abstract

In this paper, we explore an approach to generating de-
tectors that is radically different from the conventional way
of learning a detector from a large corpus of annotated pos-
itive and negative data samples. Instead, we assume that
we have evaluated “off-line” a large library of detectors
against a large set of detection tasks. Given a new tar-
get task, we evaluate a subset of the models on few sam-
ples from the new task and we use the matrix of models-
tasks ratings to predict the performance of all the models
in the library on the new task, enabling us to select a good
set of detectors for the new task. This approach has three
key advantages of great interest in practice: 1) generating
a large collection of expressive models in an unsupervised
manner is possible; 2) a far smaller set of annotated sam-
ples is needed compared to that required for training from
scratch; and 3) recommending models is a very fast oper-
ation compared to the notoriously expensive training pro-
cedures of modern detectors. (1) will make the models in-
formative across different categories; (2) will dramatically
reduce the need for manually annotating vast datasets for
training detectors; and (3) will enable rapid generation of
new detectors.

1. Motivation

Essentially, all models are wrong, but some are useful.

— George E. P. Box; Norman R. Draper, 1987 [6]

Over the past few decades, there has been much progress
in designing effective object detectors, especially when
enough data are available [14, 33, 36, 56, 37, 15, 48].
For example, flagship techniques such as Deformable Part
Models (DPMs) [14] via sliding-window fashion are best
suitable for semi-rigid objects, while Exemplar-SVMs [33]
with simple linear SVMs are highly category and instance
specific; the recent top performing detection systems in-
stead favor bottom-up region proposals [52, 10, 15] which
tend to perform well for non-rigid objects. Along with
these, more powerful appearance models, feature learn-
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Figure 1. During unsupervised hyper-training phase, a large li-
brary of object detectors informative across categories is gener-
ated. Their ratings on different detection tasks are recorded to
form a ratings store. For a new target task or category and us-
ing ratings of a small probe set of detectors on its input task with
limited samples, recommendations are made by collaborative fil-
tering. A usable object detector for this new task is thus rapidly
generated as single or ensemble of the recommended models.

ing mechanisms beyond standard hand-engineered features
such as R-CNN [15] and GoogLeNet [48] are emerging.

All of these modern detectors have in common the same
supervised training framework in which a large annotated
dataset is required and in which training from scratch is
restarted for a new task, e.g., a new category. In practice,
however, it might be difficult to produce enough data for a
new task. Moreover, in many applications it is desirable to
rapidly train a new detector for a new task, something that
is typically not possible in any of these current approaches
which require expensive training iterations. Thus, our ob-
jective is to quickly generate good models for a detection
task given a small number of labeled samples.

Our approach is based on the informal intuition that,
given a very large set of models, it is likely that some of
the models would have good performance on a new detec-
tion task, as stated in the infinite monkey theorem [1]. More
formally, inspired by this intuition, we explore a new ap-
proach, which is based on the observation that, while it may
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Figure 2. Continuous Category Space Discovery. We measure the
similarity between the 107 categories on SUN by their number of
shared PBC models within the top-200 ranked ones, and visualize
them using ForceAtlas [5, 17]. The edge between two category
nodes indicates that they have at least 10 models in common. Al-
though the models are generated entirely unsupervisedly on PAS-
CAL, it is interesting to note that visually or functionally similar
categories are naturally grouped together: such as the green clus-
ter of monitor, stove, microwave, oven, dishwasher; red cluster of
sea, river, field, sky; and purple cluster of car, bus, van, truck, etc.

be hard (impossible) to generate enough training data for a
new task, it may be easy to generate a large library of mod-
els and evaluate them off-line on a large set of tasks. Given
this data on the performance of many models on many tasks,
it may be possible to guess which of these stored models are
best suited for a novel target task by evaluating them on that
new task. The hope of course is that we can do so with a
smaller set of samples of the target task than would be nec-
essary for training from scratch. In addition to (hopefully)
requiring a much smaller sample set, this approach could
be far more efficient because it merely recommends mod-
els, which have been generated off-line.

A natural question then is why should such an approach
be possible? The first observation is that, while any specific
detector cannot generalize well across tasks, in a large-scale
library, however, it is likely that one of the library models
happens to be tuned with the similar conditions as the new
target task. Combining multiple such models into a sin-
gle new model may perform well on the new task. This
would be true especially when considering the shared prop-
erties across instances and categories [30, 39, 12, 20]. This
is not sufficient, however, as we are still faced with the
problem of selecting the right models out of the library. A
naı̈ve approach would be to evaluate each model from the
library on the input task and select the one(s) that perform
the best. Unfortunately, this direct approach typically per-
forms poorly because of the limited data available in the
input task. More precisely, the evaluation scores of the li-

brary model on the input task might be noisy enough that
the ranking of the models is not reliable.

The second observation then is that, if the library and the
set of tasks are large enough, there might be enough corre-
lation between the models that it is possible to predict the
performance of the models on the target tasks by using the
entire combined experience with the model library and the
tasks. This is similar to the approach taken in recommender
systems [25] in which a matrix of ratings of items (the ana-
log of our models) by users (the analog of our tasks) is used
to predict the ratings that a new user (the target task) would
generate, i.e., predict the top ranked items (the analog of
the best models for the target task). Inspired by prior work
in the context of recommending action classifiers [35, 34],
our goal is to explore how this approach can be used in de-
tection tasks—a more general and challenging recognition
scenario. While we share the same general idea of using
recommender system for vision tasks, the specific technical
approaches here are quite different from those in [35, 34].

The general setup is thus as follows: We first build a
large library of object detectors and we record their perfor-
mance or “ratings” on a large set of detection tasks, which
we call the “ratings store”. In order to distinguish this phase
from the traditional training phase, and by analogy with
training hyper-parameters, we call the process of generating
and evaluating large library of models off-line as “hyper-
training”. Given a new target task, recommendations are
made by trying, or rating, a small subset, called the probe
set, of detectors on the input task with few samples. That
small set of ratings, along with the ratings of all the detec-
tors in the ratings store, is used to predict the ratings of all
the models on the target task. We then select models based
on the recommendations and use them for the new task.
This thus becomes our new formulation of object detection,
which we term as model recommendation for object detec-
tion as shown in Fig. 1. Now, the model recommendation
system provides a succinct way to combine both large-scale
models and big visual data into a joint task-model space.
By directly manipulating in the new space, the experience
of acquiring models becomes a procedure similar to shop-
ping for finished products in a store.

Our contribution is thus four-fold: First, we show how
such a recommendation setup can be operationalized using
collaborative filtering techniques (Sections 2 and 4), in-
cluding an analysis of its operation on a large-scale, con-
trolled experiment (Section 5). Second, we detail how tasks
are defined and detectors are generated in the off-line stage.
Third, we show how a universal detector library, based on
combining unsupervised predictable discriminative binary
codes (PBCs) classifiers and convolutional neural networks
(CNNs) features, is generated without a bias to a partic-
ular set of categories, and we show how it is particularly
effective for populating the ratings store in this setup (Sec-
tions 6). New detectors are thus obtained rapidly on novel



classes with few samples without conventional supervised
training involved. Finally, another interesting finding of this
large-scale model system is a continuous category space
discovered by model sharing as shown in Fig. 2 and ex-
plained in Section 6.2.2.

2. Terminology and Approach Overview

A task Tj = {(xj1, yj1) , (xj2, yj2) , ...} is assumed
to be a self-contained object detection problem, where
{xj1, xj2, ...} are input images, and {yj1, yj2, ...} are the
corresponding annotations indicating labels and bounding
boxes for objects of interest. Note that annotations might
have different interpretations across tasks. Moreover, the
image samples associated with a task need not be unique;
the same data sample might be shared across many tasks
(e.g., if one dataset is used for different tasks).

Models we are interested in here are object detectors.
They can be pre-trained detectors with no free parameters,
or they can be detectors trained on different data sources.
They can be quite strong models highly tuned for certain
tasks, or they can be generic weak detectors.

The rating of a model Mi on a task Tj is a number de-
scribing how well the model performs on that task, which
is denoted by R(Mi;Tj) = rij , and is restricted to the
range [0, 1]. For example, for the detection task, we follow
the performance evaluation procedure of the PASCAL VOC
Challenge [13]. A detection is considered correct when the
area of overlap (measured by intersection-over-union, IoU)
between the predicted bounding box and the ground-truth
bounding box exceeds 50%, and the precision/recall curve
is computed accordingly. Since a single number is needed
as rating, the average precision (AP) is chosen to summarize
the shape of the precision/recall curve.

The ratings store is a matrixR, of the ratings of the mod-
els in the library on different tasks, where rows correspond
to models, and columns correspond to tasks. The ratings
store records the performance of models on tasks generated
off-line during the hyper-training phase, and encodes the
performance distribution of models on different tasks. The
matrix is n×m, where n is the number of models in the li-
brary, andm is the number of store tasks. We assume thatR
is complete, i.e., every model has been rated on every task
in the store.

Finally, the task in which we are actually interested is a
target (or hidden) task. The data in the input task is lim-
ited to a few samples from this target task. For instance, the
target task is to detect a certain type of cat; however, for its
input task, we only have access to a limited number of train-
ing samples, e.g., on the order of ten samples. We hope to
recommend models that work well on the target task. The
available ratings are the ones from the probe set on the in-
put task, which are both limited and noisy. When this set of
ratings on the input task is fed into a model recommenda-

tion system, the returned predictions are a full and de-noised
version for the target task. Recommender systems relevant
to our scenario are based on well-established collaborative
filtering techniques [25].

Due to the complexity of real-world scenarios, recom-
mending a single best model and hoping it will work well
on the target task might not be realistic. One extension is
to jointly recommend sets of models as in ensemble learn-
ing [58] and mixture of experts [19]. The simplest ap-
proach is to use the top-k recommendations, which sim-
ply selects the top-k models based on their predicted ratings
from model recommendation. However, this obvious strat-
egy can potentially recommend a highly redundant set. One
alternative is to recommend a diverse set of top perform-
ing models [45]. Once a set of models is selected, they are
combined by using a task-dependent fusion strategy, e.g.,
by training weights for the models on the input task.

To sum up, we start with a large collection of models and
images, from which we build a ratings store during hyper-
training. Then, during training given a new input task and
a probe set on that task, we use collaborative filtering tech-
niques to predict the ratings of all the models on the hidden
task and to return a single or ensemble of models with the
highest predicted ratings as the recommended models.

3. Related Work

Intuitively, in this approach we generate a new model by
learning from experience, i.e., from the matrix of evalua-
tions of models on tasks, instead of learning from super-
vised data as is normally the case. The generated model
library can be also viewed as a prior or regularization with
respect to the common visual knowledge. In previous work,
examples of transfer of prior experience to a new task in-
clude concept drift [51], domain adaption, transfer learn-
ing [40] (e.g., sparse prototype representations [43], hy-
pothesis transfer learning [27, 49], regularized SVM [4]),
multi-task learning (e.g., rank-reduced shared classifica-
tion model [2, 41]), concept modeling in the field of mul-
timedia (e.g., LSCOM [38]), intermediate representation
based on learning classifiers on related tasks (e.g., Object
Bank [29, 57], Classemes [50]), which address a different
scenario and often require extensive supervised retraining
on the new target task.

In terms of transfer scenarios, transductive transfer learn-
ing, e.g., domain adaptation, assumes different domains yet
single task [40], while we consider totally different tasks.
In contrast to inductive transfer learning, e.g., multi-task
learning, which learns all of the source and target tasks si-
multaneously [2], the construction of our model library and
ratings store is completed without having access to the tar-
get task in advance. As for transfer techniques, most of
the existing approaches transfer either on a data or instance
level, e.g., importance sampling and re-weighting, or on a



feature or parameter level, e.g., discovering shared feature
representation, parameters, or priors across related tasks [3],
which often require data reusing in the source domains and
extensive supervised retraining on the target task. Instead,
transfer happens directly on a model level in our system;
the desirable information is maintained in the model library
and ratings store while the original data are discarded.

The proposed system thus provides a general principle
and basic framework in which several crucial issues for
transfer including 1) what to transfer, 2) how to transfer,
and 3) when to transfer [40] could be tackled together. For
instance, the source models in transfer learning are usually
well-trained categorical classifiers [49, 4]. However, none
of the models in our library is required to be specifically
designed for transfer learning. They can be learned sepa-
rately and different types of detectors are also possible. In
particular, we generate a universal detector library without
any supervision, which frees the model library from ties to
a specific set of categories. If we view each base model as
a source domain, their scale is enormous and the issue of
selecting the right domain to transfer (including the scala-
bility) also arises which was normally not addressed before.

4. Collaborative Filtering
Based on the probe set ratings and the ratings store, col-

laborative filtering techniques predict the ratings of the en-
tire library. We use collaborative filtering techniques based
on matrix factorization, which assume a low-rank approxi-
mation to the ratings store that naturally embeds both tasks
and models to a joint latent factor space of dimensionality d,
such that task-model interactions are modeled as inner prod-
ucts in that space [25, 24]. Although the rating distribution
of model recommendation might be different from that of
the typical consumer recommender system, the ratings store
still has exchangeability properties—arrays of random vari-
ables whose distributions are invariant to permutations of
rows and of columns, which makes it statistically justified
to use a factor model that implicitly encodes the Aldous-
Hoover theorem for exchangeable matrices [23, 22].

In this approach, we associate each modelMi with a vec-
tor ui ∈ Rd, and each task Tj with a vector vj ∈ Rd. For
a given model Mi, the elements of ui measure the extent
to which the model possesses the factors. For a given task
Tj , the elements of vj measure how well models with the
corresponding factors will perform on the task. The inter-
action between Mi and Tj , i.e., the overall performance of
that model on the task, is then characterized by the dot prod-
uct of ui and vj . The estimate of rating rij of model Mi on
task Tj is approximated as

r̂ij = uTi vj . (1)

After the recommender system infers ui and vj from rating
patterns, it can easily predict the rating a model will give

to any task by using Eq. (1). The crucial issue is how to
transform each model and task into vectors ui, vj .

Many matrix factorization techniques can be considered
in this context, such as restricted Boltzmann machines [47],
sparse coding [32, 31], and maximum margin matrix fac-
torization optimizing directly for ranking scores [54]. Here
we limit ourselves to direct factorization approaches which
are sufficient for our purpose. Specifically, we consider
approaches based on singular value decomposition (SVD)
and non-negative matrix factorization (NMF), which we de-
scribe briefly in this section.

4.1. Factorization Techniques based on SVD
One simple way to identify the latent semantic model

and task factors is by singular value decomposition (SVD)
to decompose the rating matrix R into two factor matrices.
In practice, the distribution of ratings may be significantly
biased: some models may produce systematically higher
ratings than others, and some tasks may be systematically
easier than others. Hence, it is necessary to estimate the
portion of rating values that individual model or task biases
can explain [25]. A first-order approximation of the rating
rij is introduced to identify the biases as bij = µ+ qi + pj ,
where µ denotes the global average rating, and the parame-
ters qi and pj indicate the observed deviations of model Mi

and task Tj , respectively, from the average. The biases can
be easily estimated from the ratings store as in [25, 35] and
used to modify Eq. (1) as

r̂ij = µ+ qi + pj + uTi vj . (2)

Now, the residual rating, defined as rij = rij −µ− qi−
pj , does not remain positive. In this case, we can simply use
conventional SVD to obtain the factor matrices. Formally,
the residual rating matrix is decomposed as

R = ESF ≈ (EdSd)Fd = UV, (3)

where d indicates the number of factors, Sd is the d× d up-
per left sub-matrix of S, and Ed, Fd are the first d columns
of the left-singular vector matrix E, the first d rows of the
right-singular vector matrix F , respectively. Hence, the
model factor is U = EdSd ∈ Rn×d with uTi as its ith row
vector, and the task factor is V = Fd ∈ Rd×m with vj as its
jth column vector.

4.2. Factorization Techniques based on NMF
Given that the ratings are all non-negative, an alterna-

tive approach is to use non-negative matrix factorization
(NMF) [53], which incorporates the non-negativity con-
straint into the factored matrices. Formally, given the rating
matrix R ∈ Rn×m

≥0 with non-negative elements, NMF seeks
to decompose R into a non-negative n × d basis matrix U
(model factor) and a non-negative d×m coefficient matrix
V (task factor) , such that



R ≈ UV =

d∑
l=1

U·lVl·, (4)

where U·l is the lth column vector of U while Vl· is the lth
row vector of V . To learn the two factor matrices, we use
the prototypical multiplicative update rules [28].

Now, given the ratings of k probe models for an input
task, denoted as rk, the factor vector of the input task can be
estimated by casting as a non-negative least-squares prob-
lem with respect to v: (

Ũk

)
v = rk, (5)

where v is a d × 1 vector, and Ũk is a k × d sub-matrix of
U , whose rows are ratings of probe models on store tasks.
v can be solved by fixing Ũk while updating v using the
multiplicative update rules. After the factor v of the input
task is learned, its ratings for all the models is predicted as

r̂ = Uv. (6)

5. Recommender System Analysis
Naturally, the first and most important question to an-

swer is whether collaborative filtering could successfully
recommend correct models. A second question is to elu-
cidate the role of the different design choices involved in
this approach. To answer these questions, we designed a
controlled experiment with real detection tasks, large-scale
data (namely, PASCAL VOC 2007) and full-scale ratings
store so that for any of the target tasks one or several of the
nmodels in the library is the correct model to use or at least
a reasonable enough approximation. Thus, this is an ex-
ample of controlled recommender systems whose expected
performance is known in advance. This is inspired by the
M -closed framework [21] for statistical evaluation.

Of course, in order to support this controlled analysis,
this setup is somewhat contrived. In particular, it uses a
library of supervised models biased to a particular set of
categories. We will describe the actual set of models that
we propose to use in a real system in the next section, in-
troducing a new way of generating PBC classifiers in an
unsupervised manner.

Specifically, we use all the 12,608 ESVMs [33] pre-
trained for 20 categories on the PASCAL VOC 2007 train-
val dataset [13] as the model library. We treat these mod-
els independently here when using them to make detections.
When our target task is defined as detection on the PASCAL
VOC 2007 test dataset for the same 20 categories, there ex-
ists a subset of ESVMs from the corresponding category in
the library that work well for the task, which are supposed
to be identified by the recommender system.

Note that we use ESVMs as a convenient source for gen-
erating a large number of models to test our approach. We

do not advocate that using ESVMs is in general the best tool
for detection and, in fact, many other types of models could
be used in this framework. For example, model recommen-
dation can be naturally applied to other banks of detectors
such as ELDAs [16] and Object Bank [29].

5.1. Task Generation
For the store tasks, generally speaking, we could design

detection tasks based on specific categories, and group dif-
ferent object instances in the dataset accordingly to generate
tasks, but this would bias the system strongly toward these
specific categories and prevent it from generalizing to new
input tasks. Hence, to demonstrate the performance of the
proposed framework, we use purely random tasks instead.
Specifically, each task is constructed by randomly selecting
10 images from the PASCAL trainval dataset. We gener-
ate 10,000 different tasks in total. The final ratings store is
of size 12,608 × 10,000. Since the images within a certain
task are random and are therefore not tied to a specific cat-
egory, a detection for a given task is counted as a positive
detection if it intersects the bounding box of the ground-
truth annotation of any category. This is distinct from the
typical detection task setting, where one always focuses on
sets of visually similar objects from the same category.

For the input tasks, we use the PASCAL VOC 2007 test
dataset. We view the images containing objects from these
20 categories as 20 hidden tasks, respectively. Then, for
each hidden task, we randomly select 10 images to create
the corresponding input task. We randomly generate 50
input tasks per hidden task, and report the average perfor-
mance.

5.2. Experimental Evaluation
There are several design choices in this approach, such as

different input tasks, collaborative filtering techniques used,
number of factors, size of probe sets, size of recommended
models, etc. We evaluated the impact of all of these design
choices on this ESVM-based setup in which we have pre-
dictable performance of the models. To this end, we only
consider recommending the single best model. The model
is selected given the input task, and then evaluated on the
hidden task. The results are reported as relative mAP to op-
timum (the best achievable mAP for single ESVM on the
hidden task, which is an upper bound on the performance).

Baselines We compare against two natural baselines: 1)
Random Search—randomly pick a model from the probe
set; 2) Direct Search—pick the best model from the probe
set based on their initial ratings on the input task.

Size of Probe Set We randomly select a subset of mod-
els as the probe set. The average performance over 20 cat-
egories using SVD is shown in Fig. 3 as function of the
size of the probe set. The factor numbers are 32 and 64.
Model recommendation works consistently better than di-
rect search as the probe set increases, even when using all
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Figure 3. Effect of probe set size for individual ESVM across 20
categories on the PASCAL VOC 2007 detection test dataset. X-
axis: probe set size (ratio to the size of the entire library). Y-
axis: average performance of the recommended model using SVD
with different factor numbers (green and blue curves) vs. random
search (cyan-blue curve) and direct search (red curve) baselines,
reported as relative mAP to optimum, which is the best achievable
mAP for single ESVM (upper bound).

the models as the probe set. Note that the average model
performance indicated by random search is quite poor.

Different Collaborative Filtering Techniques The rel-
ative performance of SVD and NMF when all the models
are selected as the probe set is shown in Fig. 4. The plot
shows that they have comparable performance, with NMF
better than SVD. Combining the two methods, i.e., using the
average output of these two systems as the final prediction
would further improve the performance. Importantly, both
collaborative filtering approaches perform significantly bet-
ter than the naı̈ve direct search.

6. PBC-CNN Models: an example of unsuper-
vised hyper-training phase

The results of the last section validate our claim that
model recommendation is able to select useful models. The
other important issue remains how to generate a large col-
lection of potentially “expressive” models. ESVMs are re-
stricted in that each model is highly tuned for a specific
instance, and thus constrained to one particular set of cate-
gories when building models. However, models informative
across categories and datasets could be achieved via unsu-
pervised hyper-training. In this section, we will give an
example of hyper-training using predictable discriminative
binary codes (PBCs) [44] modified to be estimated in an un-
supervised fashion. We hyper-train on one dataset and test
on another to demonstrate the effectiveness of our approach.

Each bit in PBC corresponds to a specific model, which
can be viewed as a partition of the shared feature space of
labeled categories across the low-density region induced by
discrimination and learnability. Given unlabeled data, we
obtain pseudo-labeled data by Max-Min sampling [11] and
then cast the issue as semi-supervised PBCs [7]. Besides
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Figure 4. Comparison of different collaborative filtering tech-
niques. X-axis: 20 categories on the PASCAL VOC 2007 dataset.
Y-axis: recommendation performance using SVD (green bars) and
NMF (red bars) both with factor number 100 vs. direct search
baseline (blue bars), reported as relative mAP to optimum. NMF
works better than SVD in the majority of cases.

the unsupervised aspect, this procedure is also generalizable
into web-scale image scenarios. As before, it is important to
note that many other models could be created during hyper-
training. We use this model only to validate our approach.

6.1. Model Generation via Unsupervised Hyper-
Training

For the feature space, we use convolutional neural net-
works (CNNs) features [26] due to their demonstrated high
performance, although other features could be used. In
addition, consistent with recent work, we use category-
independent region proposals as the basic processing and
decision units. Given a large corpus of unlabeled training
images, we first generate region proposals using selective
search [52]. For each region proposal, we extract a 4,096-
D feature vector fc7 from the final hidden layer of the
pre-trained CNNs structure on ILSVRC 2012 [46] (without
fine-tuning on other datasets) [26, 15, 18]. Now we have
constructed a feature space with unlabeled proposals.

The current methods for producing PBC need label in-
formation [44, 7]. For our unsupervised discovery of PBC,
we obtain several distinct and compact groups of labeled
data by employing Max-Min sampling [11], which we use
as initial pseudo-labeled data. We then produce the semi-
supervised PBCs from these labeled datasets. Specifically,
from a large proposal pool P we first draw a subset AS
by random subsampling. Within AS , we create prototype
sets BPL by Max-Min sampling. We view BPL as pseudo-
labeled data and the remaining ones in AS that are still un-
labeled as CUL. We use the same setup and parameters for
the Max-Min sampling procedure reported in [11], result-
ing in BPL consisting of 30 categories with 6 samples per
category. Based on only the pseudo-labeled data in BPL,
we learn a 10-D prototype PBC [44]. We select and add 50
samples to each pseudo-category from the unlabeled pro-



posals CUL using category specific attributes only to expand
coverage as in [7]. Using this augmented datasetDAUG , we
retrain a new 10-D PBC, i.e., 10 models. To ensure diver-
sity, the subsampling procedure repeats for T times, and we
learn 10T models in total. They thus build up our model
library for widespread visual/attribute coverage.

6.2. Experimental Evaluation

To show that the PBC models generated by unsupervised
hyper-training are informative across categories, we con-
sider large-scale detection tasks across different datasets.

We use the entire PASCAL VOC 2007 dataset to gen-
erate model library and ratings store. Store tasks are gen-
erated similarly as the previous ESVM-based system. The
final ratings store is of size 10,000 × 10,000. For the hid-
den tasks, we consider detection of 107 object categories
on the SUN 09 test dataset [8], which span from regions
(e.g., road, sky) to well defined objects (e.g., car, sofa) and
highly deformable objects (e.g., river, curtain). The input
tasks are generated by randomly sampling 10 images from
the corresponding category on the SUN 09 training dataset.
For those categories whose numbers of training samples are
smaller than 10, we use all the training samples. We also
randomly generate 10 input tasks per hidden task, and ob-
tain the average performance. For each PBC model, we fol-
low the typical detection pipeline of R-CNN as in [15].

This is a challenging problem given that feature learning
is implemented on ImageNet and PBC models are hyper-
trained on PASCAL, while the system is finally tested on
SUN. They are very different domains. The farther away
from these source domains, the more pertinent the test
dataset will be for experimental evaluation. (Note that test-
ing on other datasets, e.g., PASCAL VOC 2012 and Ima-
geNet, cannot serve this purpose due to shared data.) Com-
pared with PASCAL, on the SUN dataset the number of ob-
jects and the amount of noise significantly increase with
far more annotated object categories and typically 7 ob-
ject classes per image [8]. Additional contextual informa-
tion is thus usually necessary to boost the detection perfor-
mance [8, 9].

6.2.1 Ensemble Model Recommendation

To deal with the fact that different input tasks may require
different factor numbers, we perform collaborative filtering
using SVD and NMF with factor numbers d ranging from
100 to 1000. For each d, we evaluate their precision on
the input task, and we then average the ratings across all
these factor configurations. The final selected models are
ranked according to this averaged prediction. Consistent
with early work in consumer recommender system [55], we
found that this method gives by far the best performance.
After recommending the top-k desired models, we calibrate
them by standard Platt scaling [42, 33] on the input task to
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Figure 5. Average performance of ensemble PBC model recom-
mendation with varied input task size over 107 categories on the
SUN 09 dataset. X-axis: ratio of recommended models in the li-
brary. The ensemble model recommendation results for input tasks
of size 10, 100, 200 without and with bounding box regression
are shown in two sets of curves—PBC-10, PBC-100, PBC-200
and PBC-BB-10, PBC-BB-100, PBC-BB-200, respectively. We
also show two sets of baselines to calibrate the results: the top
three horizontal lines are the average performance of DPM using
the entire training dataset and additionally annotated training data
without and with introducing and encoding complex contextual re-
lationships, respectively; the bottom two horizontal lines are the
average performance of R-CNN directly trained and additionally
transferred from our source models using 10 images from the input
tasks, respectively. Note that accurate generic object detectors can
be obtained based on input tasks that are from different categories
and domains compared with where the PBC models are learned.

obtain comparable scores and then perform majority vot-
ing as the fused score for each proposal, followed by non-
maximum suppression. Moreover, following the standard
bounding box regression procedure [15], we also learn ad-
ditional bounding box regressors on the input tasks, and
rectify the region proposals at test time to mitigate mislo-
calizations induced by proposal based object detection. The
average ensemble recommendation result is shown in Fig. 5.

Baselines We compare against five strong baselines: 1)
DPM using the entire SUN training dataset and 26,000 ad-
ditionally annotated objects [8]; 2) Tree-structured graphi-
cal model [8] and 3) Set-based representation [9] to encode
complex contextual relationships; 4) Direct R-CNN train-
ing using 10 images from the input tasks [15]; 5) Transfer
regularization [4] with R-CNN and our source models.

Fig. 5 shows that ensemble of PBC models works con-
sistently well as the size of the recommended model in-
creases, as shown in the six curves. The result is quite sig-
nificant if one notices the difference in numbers of train-
ing samples: Using only 10 images to select models gen-
erated from an out-of-domain dataset our approach is not
only better than R-CNN directly trained from few samples,
but it is also better than supervised DPM trained from lots
of in-domain data (hundreds to thousands), comparable to
DPM with additional contextual models. It is hard to make
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Figure 6. Collaborative detection of different models for the same
task. For three representative tasks: airplane, bed, and chair (top
to bottom), we show the top detection of the top-3 ranked models
(red, green, and blue bounding boxes) on sample images (left to
right). Note that they would detect the same, different parts of the
same, or different objects. This complementary behavior explains
the boosted performance of ensemble models in Fig. 5.

a direct comparison with Object Bank/Classemes since they
use the output of all the models as new features to retrain a
new classifier while we directly combine a subset of mod-
els. Experimentally, if we use Classemes features to retrain
a detector with few samples, it is worse than R-CNN. For
the SUN dataset, the mAP is low due to some hard cate-
gories. (The low mAP is of the same order of magnitude as
in challenging datasets, e.g., DPM on ImageNet.) Besides,
in our case with large-scale sources of non-categorical clas-
sifiers, the conventional transfer learning techniques devel-
oped with well-trained categorical source classifiers [4] per-
form poorly due to induced negative transfer. This indicates
that cross-source relations estimated by the recommender
system are crucial to identify the relevant sources here. That
is, because we have only few target samples and because the
generic sources are weak, direct transfer will be very noisy.

Similar to the object distribution in a large-scale sce-
nario, the performance distribution of models in the library
for a specific task also follows a power law, which is implic-
itly encoded by the recommender system. Moreover, as we
increase the sample size in the input task from 10 to 100 and
200, it shows steadily increased performance due to more
accurate mAP, rank, calibration, and regressors estimation,
and outperforms sophisticated contextual models. Bound-
ing box regression provides additional performance boost as
expected. This demonstrates that the recommender system
both successfully builds expressive models during hyper-
training and selects useful models based on input tasks.

6.2.2 Qualitative Visualization

Detection and Model Visualization To better understand
the PBC models, we provide two types of representative vi-
sualization: 1) Collaborative detection of different models
for the same task in Fig. 6; 2) Attributes-like behavior of the
same model across different tasks in Fig. 7.
Continuous Category Space Discovery By calculating the

Figure 7. The same model is informative across different tasks.
For five representative models (left to right), we show detection
on sample images (top to bottom). Note that the models learned
by unsupervised hyper-training can be to some extent interpreted
as attribute detectors. For example, the first column corresponds
to all staircase-like objects with vertical, horizontal, inclined, and
curved orientations (bottom to top). This attributes-like behavior
explains the generality of the models for new target tasks in Fig. 5.

number of shared models, a similarity matrix is obtained
between the 107 categories. We use ForceAtlas [5, 17] to
visualize it in Fig. 2. Although the models are generated
without any label information, visually or functionally simi-
lar categories are naturally grouped together. It again shows
the expressive power of the PBC models, which naturally
identifies a continuous category space.

7. Conclusions
We have shown the feasibility of generating new detec-

tors for a new detection task given a large store of ratings of
detectors on tasks. This enables generating detectors from
a modest number of training samples in far less time than is
needed by direct training. In addition, such a system could
be made to improve continuously over time by adding new
models and tasks to the ratings store. The specific imple-
mentation described in this paper is a first step. In par-
ticular, while we used certain factorization as our collab-
orative filtering technique, many different approaches have
been developed in that community. It would be interesting
to analyze which techniques are best adapted to different
types of data. Similarly, we used one particular approach
for fusing multiple (top-k) recommendations, but designing
a good fusion strategy integrated with recommendation re-
mains an important direction of research. Also, we have
assumed a full ratings store matrix whereas, in general, one
would envision a sparse matrix, especially in the regime of
very large model libraries and task sets. Finally, our specific
implementation in the context of detection tasks suggests a
possible mechanism for a broader range of vision tasks.
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