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Recently, many work propose to unify representation and classification in a

single model to make the representations both characteristic and discrimina-

tive. Some related outstanding methods include the relevance topic model

[5], the max-margin LDA [4] and the Gibbs max-margin topic model [6],

which show successful results with the aid of topic models. Inspired by

them, this paper proposes a multi-feature max-margin hierarchical Bayesian

model (M3HBM) for action recognition and differs from them mainly in the

designing principle, the optimization method, the introduction of multiple

feature modalities, and the modeling of high-level relations.
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Figure 1: Graphical model representation of the proposed M3HBM.

In this paper, M3HBM learns a high-level representation by combining a

hierarchical generative model (HGM) and discriminative max-margin clas-

sifiers in a unified Bayesian framework. For the representation part, HGM

is proposed to represent actions by distributions over latent spatial temporal

patterns (STPs). As shown in Fig.1,HGM includes three layers: point-level

visual observations {www,xxx}, region-level local STPs hhh scattered in many dif-

ferent small regions, and top-level global STPs zzz which are shared among all

the classes without position limitation. For point-level observations, we ex-

tract two complementary types of features (J = 2): the sparse interest points

[1] based 3D SIFT descriptors [2] and the dense sampling based MBH de-

scriptors [3]. For computational efficiency, we assume conjugate priors and

summarize the HGM as follows:

p(θ ( j)
d |α( j)) = Dir(θ ( j)

d ;α( j)), d = 1,2, ...,M;

p(τ( j)
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p(z( j)
d,n|θ ( j),DDD,ηηη ,yyy) = p(z( j)

d,n|ηηη ,yyy) ·Mult(θ ( j)
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(1)

To make the latent STPs both representative and discriminative, we in-

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.
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Figure 2: The learning framework of M3HBM. (Best viewed in color.)

troduce Gibbs classifiers and employ the multi-task learning to jointly learn

the representations and classifiers from multiple feature modalities. As

shown in Fig.2, learning classifier parameters from each feature modality

j within each action class l is viewed as a single task. For each task i, a

linear classifier is defined with a Sign function as the prediction rule. The

expected loss function is

R′(ηηη i,zzzi) = Ep(ηηη ,zzz)[R(ηηη i,zzzi)] = Ep(ηηη ,zzz)[
M

∑
d=1

max(0,T − yi
dη

T
i zd,i)]. (2)

For the loss function, we introduce augmented variables λλλ and get

ϕi(yi
d |zzzd ,ηηη) = e−2cmax(0,T−yi

dηηη
T
i zi

d) =
∫ ∞

0
N (cζ i

d |−λ i
d ,λ

i
d)dλ

i
d , (3)

where ζ i
d = T − yi

dη
T
i zd,i and N (·) denotes the Gaussian distribution.

With Gaussian priors over ηηη , we get the posterior of M3HBM as

p(ηηη ,λλλ ,zzz,hhh,θθθ ,τττ,φφφ ,μμμ,ΣΣΣ|yyy,www,xxx) = p0(ηηη ,λλλ ,zzz,hhh,θθθ ,τττ,φφφ ,μμμ,ΣΣΣ)p(yyy,www,xxx|zzz,hhh,θθθ ,τττ,φφφ ,μμμ,ΣΣΣ)
Z(yyy,www,xxx)

,

(4)

where Z(yyy,www,xxx) is the partition function.

According to the representations and classifiers given above, we derive

the Gibbs sampling algorithm to solve the model. For test videos, we perfor-

m inference to obtain the latent STPs zzz( j) and hhh( j) in each feature modality

with observations {www,xxx} and then classify the actions with the learned clas-

sifier parameters ηηη .

The detailed illustrations and implementations are described in the pa-

per, and it is proved to be beneficial to jointly learn the representations and

classifiers together. The proposed model is easy to be extended to three or

more feature modalities and other applications. It is also valuable to inte-

grate other powerful classifiers to improve the performance.
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