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Abstract

In this paper, a multi-feature max-margin hierarchical
Bayesian model (M3HBM) is proposed for action recogni-
tion. Different from existing methods which separate repre-
sentation and classification into two steps, M3HBM joint-
ly learns a high-level representation by combining a hier-
archical generative model (HGM) and discriminative max-
margin classifiers in a unified Bayesian framework. Specif-
ically, HGM is proposed to represent actions by distribu-
tions over latent spatial temporal patterns (STPs) which
are learned from multiple feature modalities and shared a-
mong different classes. For recognition, we employ Gibbs
classifiers to minimize the expected loss function based on
the max-margin principle and use the classifiers as regu-
larization terms of M3HBM to perform Bayeisan estimation
for classifier parameters together with the learning of STP-
s. In addition, multi-task learning is applied to learn the
model from multiple feature modalities for different class-
es. For test videos, we obtain the representations by the
inference process and perform action recognition by the
learned Gibbs classifiers. For the learning and inference
process, we derive an efficient Gibbs sampling algorithm
to solve the proposed M3HBM. Extensive experiments on
several datasets demonstrate both the representation power
and the classification capability of our approach for action
recognition.

1. Introduction
Human action recognition in video is an active area for

its potential in a number of real-world applications. Various

methods have been proposed to achieve automatic action

recognition. The traditional procedure for action recogni-

tion [25, 2, 32] includes two separate steps: designing de-

scriptors to represent actions and then training classifiers to

predict the action class for test video.

Recently, many work [15, 13, 27] propose to perform

representation and classification together in a single model

with the aid of probabilistic graphical models and present

successful results. A common idea of these methods is to

construct a graphical model for each class and describe ac-

tions by combining the learned class-specific parameters.

Then a prediction score for each action class is obtained by

a class-specific inference process, and the final action class

is obtained through a maximum-voting process based on

the class-specific scores. One challenge of these methods

is that the powerful capability of discriminative classifier-

s, like max-margin classifiers, is excluded in the learning

process, which makes the learned representations may be

appropriate for description, but may be not optimal for clas-

sification.

In this paper, we propose a multi-feature max-margin hi-

erarchical Bayesian model (M3HBM), which jointly learns

a multi-feature hierarchical generative model (HGM) as the

representation part together with max-margin classifiers in

a unified Bayesian framework for action recognition. In-

spired by the recent success of hierarchical structures for

representation, we model actions by a hierarchical genera-

tive model (HGM) including three layers: point-level visual

observations, region-level local STPs which are distribut-

ed in many different small neighbourhoods, and top-level

global STPs which are shared among all different classes

without position limitation.

Through HGM, we learn from multiple feature modal-

ities to jointly characterize different aspects of action-

s and represent actions by the probabilistic distribution-

s over the top-level global STPs. For the classification

part in M3HBM, Gibbs classifiers are applied to minimize

the expected loss based on the max-margin principle, and

Gaussian priors are introduced to the classifiers to perform

Bayesian estimation for classifier parameters. We employ

the classifiers as regularization terms of M3HBM to joint-

ly learn the parameters in HGM and Gibbs classifiers in

a united process. By learning the representations together

with the classifiers in a unified framework, the learned la-

tent STPs are both descriptive and discriminative for action

recognition.

Additionally, we integrate the multi-task learning into

our model to learn shared latent STPs from multiple fea-
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ture modalities for different classes.In the end, an efficien-

t collapsed Gibbs sampling algorithm is derived to learn

the proposed M3HBM. We validate the proposed model on

both the representation and recognition capabilities, and the

experimental results clearly show the effectiveness of our

model for action recognition.

The reminder of this paper is organized as follows. Sec-

tion 2 briefly reviews the related work. Section 3 presents

the details of the proposed model and derives the Gibbs

sampling algorithm for the learning and inference process.

Section 4 illustrates the experimental settings and presents

the empirical results. Finally, Section 5 concludes the paper.

2. Related Work
During the past few years, significant progress has been

made to develop some appropriate descriptors for action

recognition. However, many of them are carefully engi-

neered and/or hand-crafted which are designed for specific

tasks and so have limited generality.

Recently, some work propose to automatically learn the

mid-level or high-level representations by introducing hier-

archical structures for recognition [24, 24, 9] . One line of

work is based on topic models [4, 1] which have received

increasing attention in recent years for their appealing mo-

tivation and great success to discover the latent semantic

topics in documents. To make the model structure more

suitable for computer vision tasks, various types of discrim-

inative information [7, 16, 27] and relations between topics

and words have been gradually introduced into the model-

s [11, 5, 30, 14]. For example, Niu et al. [17] propose to

cast the spatial context information in a discriminative L-

DA model for scene recognition. They include the class

label in the model and perform recognition by maximum a

posteriori (MAP) estimation of the image class. In [12], Lin

and Xiao integrate the spatial relationships between image

regions into a spatial topic process for representation and

employ a linear SVM for scene classification. For recogni-

tion, many methods perform classification by training extra

independent classifiers in a next separate stage. Some oth-

ers learn the model parameters for each class respectively,

give the class-specific prediction scores by maximizing the

likelihood or posterior of the model for each class, and then

perform maximum voting to predict the final class of test

samples, which considers little the advantages of discrimi-

native classifiers for recognition.

Some recent approaches have taken several attempts to

combine the learning process of high-level representations

together with discriminative classifiers in a single graphi-

cal model for recognition. Two most related methods to

our work are the relevance topic model in [29] and the

max-margin latent Dirichlet allocation in [28]. In the rel-

evance topic model [29], sparse Bayesian learning is incor-

porated into the Replicated Softmax model [21] to discov-

er the topics for representation and recognition. Although

they learn the representations and classifiers together like

us, they optimize the parameters in a principle of automat-

ic relevance determination which is totally different from

our max-margin principle. In [28], Wang and Mori develop

a max-margin latent Dirichlet allocation(MMLDA) model

by combining the max-margin learning and latent Dirich-

let allocation (LDA) together to learn the representations

for image classification. In spite of the good performance,

the model suffers from computational challenges in the fol-

lowing two main aspects: the model is learned by varia-

tional approximations which involve complex computation-

s of the derivatives of the probabilities, and the classifier-

s are optimized by solving an optimization problem simi-

lar to a multi-class SVM problem, both of which are time-

consuming especially when the number of classes is large.

Recently, Zhu et al. [31] propose a Gibbs max-margin

topic model to combine Gibbs classifiers with LDA and

show successful results for document analysis. Inspired

by [31] which has proved the computational efficiency of

minimizing the expected loss function (for the linearity of

expectation operation), we employ Gibbs classifiers in our

M3HBM model to form the classification part and minimize

the expected loss function based on the max-margin princi-

ple. For action recognition, M3HBM learns from multiple

feature modalities by multi-task learning, instead of only

the word-frequency features in [31]. Furthermore, rather

than assuming text words to be independent, we jointly

models high-level relations including both context of fea-

ture words and relations between latent STPs. In addi-

tion, M3HBM performs inference similar to [4] and direct-

ly employs learned statistics of training data together with

test data for inference without estimation. Finally, we also

compare the two models in our experimental results which

shows an advantage of M3HBM for action recognition.

3. Multi-Feature Max-Margin Hierarchical
Bayesian Model (M3HBM)

Given a collection of videos, the proposed M3HBM

jointly learns a probabilistic distribution over latent STPs

for representation together with max-margin classifiers for

recognition.

In the following, we first give the low-level representa-

tions to form the observations for the proposed model. Then

a multi-feature hierarchical generative model (HGM) is p-

resented to learn latent STPs as high-level representations

based on the observations and then the simplified generative

process with max-margin classifiers as known is illustrated.

Afterwards we give the details of the max-margin classi-

fiers and the multi-task learning method to jointly deal with

multiple feature modalities and multiple action classes in a

unified framework. In the end, we derive an efficient Gibbs

sampling algorithm for the proposed M3HBM.
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Figure 1. The low level context information in our model.

3.1. Point-Level Visual Observations

In this paper, we employ two feature modalities, but it

is easy to extend the following process and the proposed

model to three or more types of feature modalities.

Specifically, we extract two complementary types of fea-

tures to generate the point-level observations. The first type

is employed to describe the appearance characteristics of

actions by drawing 3D SIFT descriptors [23] based on s-

parse spatial-temporal interest points [8]. Compared with

the traditional 2D SIFT descriptors, the 3D SIFT descrip-

tors are able to capture the appearance variations in both the

spatial and temporal domains. However, interest points are

always too sparse to capture the details of motions. There-

fore, for the second type, we sample densely in each frame

on multiple scales and employ the motion boundary his-

togram (MBH) descriptors [25] to capture the motion in-

formation. By using the relative difference between optical

flows, MBH descriptors are effective to handle background

movements and scale changes.

Then we quantize the sparse appearance features to gen-

erate a Vs-word codebook and the dense motion features

to generate a Vt-word codebook respectively. The feature

points are described by the nearest cluster index to form vi-

sual words {w}. In addition, we keep the continuous 3D

position coordinates {x} of each word and use them to re-

strict the mid-level STPs in different small neighborhoods.

As shown in Figure 1, by introducing the position informa-

tion {x}, the mid-level STP corresponding to each word in

M3HBM is not only decided by the appearance and motion

of the current word, but also influenced by the neighbour

words, which will be reflected by the Gaussian distributions

and the learning process as shown in the following subsec-

tions. The class label y of each clip is also introduced to the

training process to performs parameter estimation.

3.2. The Multi-Feature Hierarchical Generative
Model

The goal of HGM is to learn latent STPs from multi-

ple feature modalities and represent actions by probabilistic

distributions over the learned STPs. The latent STPs are

shared among different action classes, but different action-

s have different priorities on each latent STP. Our HGM is

based on latent Dirichlet allocation (LDA) [1] which is pro-

posed to discover latent topics in documents. In the follow-

ing, we will use the similar terminologies as that in docu-
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Figure 2. Graphical model representation of the proposed

M3HBM. We have omitted the hyper-parameters α(j), β(j), γ(j),

ξ(j), μ(η) and Σ(η) to simplify the graphical model.

ment analysis and give the generative process of HGM in

the following with the assumption that the parameters of

max-margin classifiers, denoted by {η,λ}, are fixed to be

known values in this subsection.

We divide each video into several overlapped temporal

clips and treat each clip as an individual document d. As

shown in Figure 2, we model the actions in a clip with three

layers: point-level visual observations {w = {w(j)},x =
{x(j)}}, mid-level local STPs h = {h(j)} which are cen-

tered at several certain locations and top-level global STP-

s z = {z(j)} which are shared among different actions,

where j = 1, ..., J and J is the number of different fea-

ture modalities. In the same type of feature modality, the

local STPs h are modeled as the probabilistic distributions

over visual observations {w,x}, and the global STPs z are

modeled as mixture distributions over local STPs .

Given the parameters {η,λ} of the max-margin clas-

sifiers, the generative process to produce observations

{w(j),x(j)} in the j-th feature modality for a collection of

clips D = {d, d = 1, ...,M} is defined as follows. Sup-

pose a clip d with class label yd has N
(j)
d visual words

{w(j)
d,n, x

(j)
d,n} (n = 1, ..., N

(j)
d ) in the j-th feature modality.

Each clip d is assumed to be drawn from an Uniform dis-

tribution Uniform(M) so that each clip is selected with-

out priorities but with equal chance; Within each clip, N
(j)
d

global STPs z
(j)
d,n (1 ≤ n ≤ N

(j)
d ) are drawn independently

from a multinomial distribution p(z
(j)
d,n = k|d,η, yd, θ(j))

(1 ≤ k ≤ K(j)) conditioned on clip d, the class label

yd, the classifier parameters η and the distribution param-

eter θ(j), where K(j) is the number of global STPs; Then



N
(j)
d local STPs h

(j)
d,n are drawn from a multinomial dis-

tribution p(h
(j)
d,n = r|z(j)d,n, τ

(j)) (1 ≤ r ≤ R(j)), condi-

tioned on the n-th global STP z
(j)
d,n and the parameter τ (j),

where R(j) is the number of local STPs; Afterwards, N
(j)
d

visual words w
(j)
d,n are drawn from a multinomial distribu-

tion p(w
(j)
d,n|h(j)

d,n, φ
(j)) conditioned on the n-th local STP

h
(j)
d,n and the parameter φ(j); Finally, the position x

(j)
d,n is

drawn from a Gaussian distribution p(x
(j)
d,n|h(j)

d,n, μ
(j),Σ(j))

conditioned on the n-th local STP h
(j)
d,n and parameters

{μ(j),Σ(j)}.

For computational efficiency, we assume Dirichlet

distributions with hyper-parameters {α(j), γ(j), β(j)} as

the conjugate priors over {θ(j), τ (j), φ(j)}. In ad-

dition, we assume Normal-inverse-Wishart distribution

NIW(μ(j),Σ(j)|m(j)
0 , κ

(j)
0 , ν

(j)
0 , S

(j)
0 ) as the conjugate

prior over the Gaussian distribution parameters {μ(j),Σ(j)}
and use symbol ξ(j) to denote {m(j)

0 , κ
(j)
0 , ν

(j)
0 , S

(j)
0 } for

short. For the j-th feature modality, we summarize the com-

plete generative model as:

p(θ
(j)
d |α(j)) = Dir(θ

(j)
d ;α(j)), d = 1, 2, ...,M ; (1)

p(τ
(j)
k |γ(j)) = Dir(τ

(j)
k ; γ(j)), k = 1, 2, ...,K(j); (2)

p(φ(j)
r |β(j)) = Dir(φ(j)

r ;β(j)), r = 1, 2, ..., R(j); (3)

p(μ(j)
r ,Σ(j)

r |ξ(j)) = NIW(μ(j)
r ,Σ(j)

r |ξ(j))
= N (μ(j)

r |ν(j)
0 ,Σ(j)

r )IW(Σ(j)
r |κ(j)

0 , S
(j)
0 );

(4)

p(z
(j)
d,n|θ(j),D,η,y) = p(z

(j)
d,n|η,y) ·Mult(θ

(j)
d ); (5)

p(h
(j)
d,n|τ (j), z(j)d,n = k) =Mult(τ

(j)
k ); (6)

p(w
(j)
d,n|h(j)

d,n = r, φ(j)) =Mult(φ(j)
r ); (7)

p(x
(j)
d,n|h(j)

d,n = r, μ(j),Σ(j)) =N (μ(j)
r ,Σ(j)

r ). (8)

Given the generative process above, the joint distribution

of HGM with fixed classifiers parameters η and class labels

y is

p(z,h,w,x, d,θ, τ ,φ,μ,Σ|η,y, α, β, γ, ξ)

=
J∏

j=1

[( M∏
d=1

p(θ
(j)
d |α(j))

K(j)∏
k=1

p(τ
(j)
k |γ(j))

·
R(j)∏
r=1

p(φ(j)
r |β(j))p(μ(j)

r ,Σ(j)
r |ξ(j))

)

·
( M∏

d=1

N
(j)
d∏

n=1

p(z
(j)
d,n|θ(j)d ,η, yd)p(h

(j)
d,n|τ (j), z(j)d,n)

· p(w(j)
d,n|h(j)

d,n, φ
(j))p(x

(j)
d,n|h(j)

d,n, μ
(j),Σ(j))

)]
.

(9)

3.3. Multi-Feature Max-Margin Hierarchical
Bayesian Model

To make the learned STPs more discriminative for clas-

sification, we introduce max-margin classifiers to learn the

representations. In particular, we employ Gibbs classifiers

[31] to minimize the expected margin-based classification

loss and assume Gaussian priors over the classifiers to per-

form parameter estimation together with the learning pro-

cess of HGM. In addition, we apply the multi-task learning

method to learn the shared latent STPs from multiple feature

modalities and estimate the parameters for different classes.

The classifiers and HGM are coupled via the latent global

STPs z, which makes the representations in our model both

descriptive and predictive for action recognition.

As shown in Figure 3, learning the classifier parameters

from each feature modality j within each action class l is

viewed as a single task and there are I = L ·J tasks in total

where L is the number of action classes.

We define the linear discriminant function of task i (1 ≤
i ≤ I) as

Fi(ηi, zi;wi,xi) = ηT
i zi, (10)

where ηi are parameters, {wi,xi} are observations, and zi

are probabilistic representations over the global STPs for

task i which can be defined as the learned parameter θ or

the average frequency of each global STP in the clip.

The prediction rule of task i for the training process is

defined as

ŷi(ηi, zi) = sign F (ηi, zi;wi,xi), (11)

where sign(·) is the sign function.

The hinge loss of task i is defined as

R(ηi, zi) =

M∑
d=1

max(0, T − yidη
T
i zd,i), (12)

where T is the threshold for margin values and

yid =

{
1, if yd = li, where li is the label of task i;
−1, otherwise.

(13)

To transform the classifiers into probabilistic form, we

consider η as random variables and minimize the expected

hinge loss over the joint distribution p(η, z) as

R′(ηi, zi) = Ep(η,z)[R(ηi, zi)]. (14)

To perform Bayesian estimation for η, we introduce aug-

mented variables λ [19] to express the max function in E-

q.12 as

ϕi(y
i
d|zd,η) = exp (−2cmax(0, T − yidη

T
i z

i
d))

=

∫ ∞

0

N (cζid| − λi
d, λ

i
d)dλ

i
d,

(15)
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Figure 3. The learning framework of M3HBM in which a unified

Bayesian framework is employed to combine the proposed HG-

M with the max-margin classifier together. The green box shows

the HGM for action representation and the blue box illustrates the

max-margin component for classification. We employ multi-task

learning to integrate the two parts to simultaneously learn the rep-

resentations and classifiers from multiple feature modalities for

multiple classes, as shown by the red box. The green and blue

arrows in the figure are used to denote that the representations

and classifiers are interacted with each other in our model. (Best

viewed in color.)

where ζid = T − yidη
T
i zd,i and N (·) denotes the Gaussian

distribution. Considering the conjugacy property, we as-

sume Gaussian priors over η as

p0(η) =

I∏
i=1

N (ηi;μ
(η)
0 ,σ

(η)
0 ), (16)

where μ
(η)
0 and σ

(η)
0 are the mean and variance of the prior

respectively.
By combining the generative process of HGM and the

distributions over classifiers, we can get the posterior of
M3HBM as

p(η,λ, z,h,θ, τ ,φ,μ,Σ|y,w,x)

=
p0(η,λ, z,h,θ, τ ,φ,μ,Σ)p(y,w,x|z,h,θ, τ ,φ,μ,Σ)

Z(y,w,x)
,

(17)

where Z(y,w,x) is the normalized constant and indepen-

dent of the parameters and variables.

3.4. Model Learning

By taking advantage of conjugacy, we integrate out the

multinomial parameters {θ, τ ,φ} and the Gaussian param-

eters {μ,Σ}, and then obtain the collapsed posterior distri-

bution as

p(η,λ, z,h|y,w,x) ∝ p0(η)ϕ(y,λ|z,η)p(z,h,w,x).
(18)

For computational convenience, we assume μ
(η)
0 = 0 and

σ
(η)
0 = σ2

i for p0(ηi) and derive the Gibbs sampling pro-

cess for learning M3HBM as follows.

Sampling h
(j)
d,n:

p(h
(j)
d,n = r|z,x,w, γ, ξ)

∝ γ + n
(j)−
k,r

Rγ + n
(j)−
k,.

· β + n
(j)−
r,w

V (j)β + n
(j)−
r,.

·G(j)
x .

(19)

where n
(j)
k,r is the number of words with global STP k as-

signed to local STP r in the j-th modality, n
(j)
r,w is the num-

ber of words with word value w assigned to local STP r in

the j-th modality, the symbol · in n
(j)
k,. and n

(j)
r,. means sum-

mation over the local STPs and the visual words respective-

ly. The superscript − denotes the count excluding the n-th

word. G
(j)
x is decided by context x(j) and can be simplified

by using Stirling’s approximations to obtain

G(j)
x ∝ (κ

(j)
N− + 1)

−ρ
(j)
x
2

(κ
(j)
N−)−ρ

(j)
x /2

· ‖S
(j)
N−+1‖−

ν
(j)
N−+1

2

‖S(j)
N−‖−

ν
(j)
N−
2

·
ρ(j)
x∏

a=1

√
ν
(j)
N− + 1− a,

(20)

where ρ
(j)
x is the dimensionality of x(j) and

κN = κ0 + n(j)−
r,. ;

νN = ν0 + n(j)−
r,. ;

mN =
κ0m0 + n

(j)−
r,. x

κN
;

SN = S0 + κ0m0m
T
0 +

n(j)−
r,.∑
n=1

xnx
T
n − κNmNmT

N .

(21)

Sampling z
(j)
d,n:

p(z
(j)
d,n = k|η,λ,h,x,w, ) ∝ α+ n

(j)−
d,k

Kα+ n
(j)
d,·

· γ + n
(j)−
k,r

Rγ + n
(j)
k,·

·

L∏
i=1

exp (
(yidc(cT + λi

d)− c2

2N
(j)
d

ηik − 2N
(j)
d −2

N
(j)
d

Λi
dn)ηik

N
(j)
d λi

d

),

(22)

where Λi
dn = 1

Nd−1

∑K
k=1 ηikn

(j)−
d,k and n

(j)−
d,k is the num-

ber of words assigned to global STP k in the j-th feature

modality in document d. From the above we can see that,

the value of each STP z
(j)
d,n is influenced by each task i,

which means that all the feature modalities are influenced

by each other.



Sampling λi
d:

p(λi
d|zd,i,η) ∝

1√
2πλi

d

exp

(
− (λi

d + cζid)
2

2λi
d

)

= GIG(λi
d;

1

2
, 1, c2(ζid)

2),

(23)

Where GIG(x; p, a, b) is a generalized inverse Gaussian

distribution [3].

Sampling ηi:

p(η|z,λ,h) =
I∏

i=1

p(ηi|zi,λi) =

I∏
i=1

N (ηi;μ
(η)
i ,Σ

(η)
i ),

(24)
where

Σ
(η)−1
i =

1

σ2
i

I + c2
N∑

d=1

zd,iz
T
d,i

λi
d

,

μ
(η)
i = Σ

(η)
i (c

D∑

d=1

yi
d
λi
d + cT

λi
d

zd,i).

(25)

3.5. Inference and Recognition

The goal of this step is to infer the latent STPs z(j) and

h(j) in each feature modality for test clip d with observa-

tions {w,x} and then classify the actions with the learned

classifier parameters η. We perform inference by

p(z̃
(j)
dn = k|w̃,D) ∝ αk + ñd,k

Kαk + ñd

γ + ñk,r + nk,r

Rγ + ñk + nk
, (26)

p(h̃
(j)
dn = r|w̃,D) ∝ γ + ñk,r + nk,r

Rγ + ñk + nk

β + ñr,w + nr,w

V β + ñr + nr
G

(j)
x̃ ,

(27)

where the symbol ˜ is used to denote the variables in

test clip and G
(j)
x̃ is computed as the gaussian probability

p(x̃|μ(j)
r ,Σ

(j)
r ) of x̃ in new document with trained parame-

ters μ
(j)
r = mN and Σ

(j)
r = SN for simplicity.

Having obtained the global STPs z, we compute the pre-

dict score of each clip for each class by Eq.10 and then per-

form maximum majority voting on these prediction scores

to obtain the final class label of the video which is composed

by several clips.

4. Experiments
In this section, we evaluate our approach on two pub-

lic datasets, one benchmark dataset and one more challeng-

ing dataset. Firstly, we test on the benchmark KTH action

datasets [22]: There are six human action classes performed

by 25 subjects in four different scenarios. We perform five-

fold cross-validation on this dataset where sequences of 20

persons are used for training and the other 5 persons are for

test each time. Secondly, we test on a much more challeng-

ing UCF Sports action dataset [20]: There are 150 sports

Figure 4. Some sample frames in each datasset.

action videos from 10 classes in total and most of the videos

have severe camera motions and viewpoints variations. We

extend the dataset by mirror-flipping the videos as [6, 26]

and perform five-fold cross validation on this dataset. We

test several aspects of our model and compare with several

related methods on both the two datasets to show the effec-

tiveness of our model.

4.1. Experimental Settings

For the sparse interest points based 3D SIFT features,

the spatial and temporal scale parameters are empirically

fixed to 2 respectively. The size of the cuboid is set to be

6× 6× 3 for all the datasets. For the dense sampling based

MBH descriptors, we sample on a grid spaced by 5 pixels

and use 8 spatial scales spaced by a factor of 1/
√
2 as in

[25]. For all the datasets, we set K(j) and R(j) of each

feature modality j as 100 and 400 respectively.

Experiments were conducted in two groups to verify the

representation power and the recognition capability of our

approach respectively. In the first group, we evaluate the

representation performance of M3HBM by combining HG-

M with linear SVM classifiers for action recognition and

compare with related LDA based methods using exactly the

same features. In the second group, we demonstrate the

classification capability of the proposed M3HBM for ac-

tion recognition through two groups of comparison: (1).

we compare M3HBM with the HGM+SVM method which

shares the same generative part and similar classifiers to

M3HBM but performs representation and classification in

separate steps. (2). we compare with other related methods

which use similar hierarchical structures and similar fea-

tures for action recognition.

4.2. Evaluation of HGM for Action Representation

In this part, we test the representation capability of HG-

M by combining it with linear SVM classifiers for action

recognition. We compare the representations obtained in

several settings, denoted by LDA+S, LDA+M, LDA+F, HG-
M+S, HGM+M, and HGM+F respectively. We use symbol-

s “S”, “M” and “F” to denote the representations obtained

from only SIFT descriptors, only MBH descriptors and the



Methods Fold1 Fold2 Fold3 Fold4 Fold5 Average

LDA+S 83.19 88.33 94.12 96.67 93.33 91.14

LDA+M 87.39 95.00 90.76 91.67 91.67 91.30

LDA+F 90.76 95.83 90.76 96.67 94.17 93.65

HGM+S 90.76 95.83 93.28 96.67 95.00 94.31

HGM+M 90.76 94.17 92.44 96.67 96.67 94.15

HGM+F 89.92 96.67 94.12 99.17 97.50 95.48

Table 1. Comparison results by using HGM and LDA for repre-

sentation and SVM for classification on the KTH dataset (%).

Method Fold1 Fold2 Fold3 Fold4 Fold5 Average

LDA+S 66.67 70.00 83.33 80.00 78.33 75.67

LDA+M 93.33 81.67 83.33 85.00 76.67 84.00

LDA+F 81.67 81.67 86.67 88.33 91.67 86.00

HGM+S 81.67 78.33 86.67 85.00 88.33 84.00

HGM+M 91.67 91.67 90.00 95.00 90.00 91.67

HGM+F 95.00 93.33 91.67 95.00 93.33 93.67

Table 2. Comparison results by using HGM and LDA for represen-

tation and SVM for classification on the UCF Sports action dataset

(%).

concatenation of SIFT and MBH descriptors respectively.

Here HGM is implemented by excluding the influence of

the class labels y and the max-margin classifiers η in the

sampling process, which makes it an unsupervised model

similar to LDA. We implement with the same parameter-

s for LDA and HGM, including the hyper-parameters, the

convergence principle, the generation method to get docu-

ments, and so on. We use the average frequency of each

global STP z in each clip as the representation generated

by HGM and the average frequency of topics generated by

LDA in each clip as the representation to input to the fol-

lowing SVM classifiers.

The comparison results on the two action datasets are

shown in Table 1 and Table 2 respectively. We can see

that HGM outperforms LDA on both datasets, which clear-

ly shows the representation power of our HGM for action

recognition. In particular, on the KTH dataset, HGM out-

performs LDA with an average accuracy of 95.48% with

the peak accuracy of 99.17% in Fold 3 when using both the

SIFT features and the MBH descriptors.

Furthermore, HGM also shows a stable performance on

each fold with high accuracy. For example, when using only

the SIFT features, the divergence between the peak and low-

est accuracy in the five folds of HGM on the KTH dataset

is no more than 6% which is lower than a half of the di-

vergence of 13.48% obtained by LDA. On the other hand,

the divergence between the five folds of HGM on the UCF

Sports action dataset is only 5% when using only MBH de-
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Figure 5. Confusion tables on the KTH dataset and the UCF Sports

action dataset.

scriptors and it is only about one third of the divergence of

16.66% obtained by LDA.

In short, the average recognition accuracy of our HGM is

much higher than LDA on both datasets which verifies the

advantages of our HGM for describing actions. In addition,

the comparison results also proves the stability of our HGM

for action representation.

4.3. Evaluatation of M3HBM for Action Recogni-
tion

For action recognition, we compare M3HBM with oth-

er related methods in two groups. In the first group, we

compare the recognition performance of M3HBM with HG-

M+SVM on the two action datasets and demonstrate the

benefits of jointly learning the representations and classi-

fiers in a unified process. In the second group, we compare

M3HBM with other similar methods which also employ

hierarchical structures, including deep structures in [10],

to build representations and use similar features for action

recognition.

Figure 5 shows the recognition confusion tables of

M3HBM on the KTH dataset and the UCF Sports action

dataset. In general, we can see that M3HBM achieves an

accuracy of 100% on 2 classes in the total 6 classes on K-

TH dataset and the lowest accuracy in these classes is as

high as 94.00%. On the UCF Sports action dataset, we can

see that M3HBM achieves an accuracy of 100% on as many

as 5 classes in the total 10 classes. Moreover, we achieve

an accuracy higher than 90% in most of the total 10 classes,

which proves the stability of our approach for recognition.

In the following, Table 3 compares M3HBM with HG-

M+SVM using exactly the same features and representation

model HGM, and the difference only lies on that the repre-

sentations are learned separately or jointly with the clas-

sifier part. It is clear to see that M3HBM outperforms HG-

M+SVM on both datasets with a significant improvement in

general, which proves the effectiveness of the joint learning

framework of M3HBM for action recognition. In particu-

lar, M3HBM achieves an accuracy of 97.99% on the KTH



KTH dataset UCF Sports dataset

HGM+SVM M3HBM HGM+SVM M3HBM

Fold1 89.92 96.64 95.00 95.00

Fold2 96.67 98.33 93.33 93.33

Fold3 94.12 97.48 91.67 93.33

Fold4 99.17 99.17 95.00 93.33

Fold5 97.50 98.33 93.33 96.67

Average 95.48 97.99 93.67 94.07
Table 3. Recognition results on the KTH and UCF Sports action

dataset (%).

dataset, which is higher than HGM+SVM by more than 2%,

and 94.07% on the UCF Sports action dataset respectively.

Moreover, the divergence of the recognition accuracy ob-

tained by HGM+SVM on the two datasets achieves 9.25%

and 3.33% respectively, while the divergence of M3HBM

are less than 3% on both datasets, which clearly show the

advantages of the proposed M3HBM for action recogni-

tion. Because the comparisons are performed on exactly the

same features and mainly differently on the learning frame-

work, the results demonstrate that M3HBM is benefit from

the joint learning framework of representation and classi-

fiers. Taken together, Table 1, 2 and Table 3 show that the

proposed M3HBM outperform the baseline LDA+SVM on

both datasets by a large margin and present a clear improve-

ment for action recognition.

In the next part, we compare with other related meth-

ods in Table 4, including both discriminative methods and

graphical models based methods which employ hierarchi-

cal structures and similar features for action recognition. In

[25], Wang combine the MBH descriptors and other appear-

ance features to represent actions, which is similar to our

point-level representation, but use a non-linear SVM with a

χ2 kernel for classification. As a popular technique, deep

architectures are receiving more and more attention. A-

mong the method using deep architectures for action recog-

nition, [10] is an outstanding work which uses a high-level

representation obtained from spatial temporal features for

recognition. As the results in Table 4 shown, our M3HBM

outperforms most related methods and achieves a relatively

higher performance on both datasets, especially on the UCF

Sports action dataset which is much more challenging than

KTH dataset. We also compare with other similar graphi-

cal model based methods in Table 4, like [13, 16] and [27],

and the results show the advantages of our method on both

datasets.

5. Conclusions
This paper has proposed a multi-feature max-margin hi-

erarchical Bayesian model (M3HBM) for action recogni-

tion. A three-layer hierarchical generative model (HGM) is

KTH dataset UCF Sports dataset

Wang et al. [25] 94.2 88.2

O’Hara et al. [18] 97.9 91.3

Le et al. [10] 93.9 86.5

Kovashka et al. [6] 94.53 85.49

Malgireddy et al. [13] 94.6 -

Niebles et al. [16] 83.33 -

Wang and Mori [27] 91.20 -

M3HBM 97.99 94.07

Table 4. Comparison of recognition accuracy on the KTH dataset

and the UCF Sports action dataset (%).

constructed to learn a high-level representation based on la-

tent spatial temporal patterns (STPs) which are learned from

multiple feature modalities and shared among all classes.

We introduce Gibbs classifiers into M3HBM and employ

Gaussian priors to learn the classifiers in a Bayesian frame-

work together with the learning process of STPs. In ad-

dition, multi-task learning is introduced into our model to

learn the latent STPs and the classifiers from multiple fea-

ture modalities for different classes. An efficient Gibbs

sampling algorithm is derived for both the learning and in-

ference process of M3HBM. Experiments have shown the

advantages of our methods for representation and have also

demonstrated the effectiveness of M3HBM for action recog-

nition. Several future work may be developed in view of

the following appealing properties of our model. Firstly, it

is easy to extend our model to three or more feature modal-

ities to enrich the representations. In addition, our model

is also suitable for many other applications, such as image

classification. Last but not least, it is also interesting to in-

tegrate many powerful classifiers, other than max-margin

classifiers, into the proposed M3HBM to improve the recog-

nition performance.
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