
Computing the Stereo Matching Cost with a Convolutional Neural Network

Jure Žbontar1, Yann LeCun2

1University of Ljubljana. 2New York University.

Introduction

Consider the following problem: given two images taken from cameras at
different horizontal positions, the goal is to compute the disparity d for each
pixel in the left image. Disparity refers to the difference in horizontal loca-
tion of an object in the left and right image—an object at position (x,y) in the
left image will appear at position (x−d,y) in the right image. Knowing the
disparity d of an object, we can compute its depth z (i.e. the distance from
the object to the camera) by using the following relation: z = f B

d , where f
is the focal length of the camera and B is the distance between the camera
centers.

We propose training a convolutional neural network [2] on pairs of small
image patches where the true disparity is known (e.g. obtained by LIDAR).
The output of the network is used to initialize the matching cost between a
pair of patches. Our stereo method achieves an error rate of 2.61 % on the
KITTI stereo dataset [1] and was the top performing method on this dataset
when the paper was first presented.

Creating the dataset

A training example comprises two patches, one from the left and one from
the right image:

< PL
9×9(p),PR

9×9(q)>, (1)

where PL
9×9(p) denotes a 9× 9 patch from the left image, centered at p =

(x,y). For each location where the true disparity d is known, we extract
one negative and one positive example. A negative example is obtained by
setting the center of the right patch q to

q = (x−d +oneg,y), (2)

where oneg is an offset corrupting the match, chosen randomly from the set
{−Nhi, . . . ,−Nlo,Nlo, . . . ,Nhi}. Similarly, a positive example is derived by
setting

q = (x−d +opos,y), (3)

where opos is chosen randomly from the set {−Phi, . . . ,Phi}. The reason for
including opos, instead of setting it to zero, has to do with the stereo method
used later on, but opos was always less than oneg. Nlo, Nhi, Phi, and the size
of the image patches n are hyperparameters of the method. Samples from
the dataset are depicted in Figure 1.

Network architecture

The network consists of eight layers, L1 through L8. The first layer is con-
volutional, while all other layers are fully-connected. The inputs to the net-
work are two 9×9 gray image patches. The first convolutional layer consists
of 32 kernels of size 5× 5× 1. Layers L2 and L3 are fully-connected with
200 neurons each. After L3 the two 200 dimensional vectors are concate-
nated into a 400 dimensional vector and passed through four fully-connected
layers, L4 through L7, with 300 neurons each. The final layer, L8, projects
the output to two real numbers that are fed through a softmax function, pro-
ducing a distribution over the two classes (good match and bad match). The
weights in L1, L2, and L3 of the networks for the left and right image patch
are tied. Rectified linear units follow each layer, except L8. We did not use
pooling in our architecture. The network contains almost 600 thousand pa-
rameters. The architecture is appropriate for gray images, but can easily be
extended to handle RGB images by learning 5×5×3, instead of 5×5×1

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

Left image patch Right image patch Label

Good match

Bad match

...
...

Figure 1: We constructed a dataset with 45 million training examples. Each
example is a pair of image patches, one from the left and one from the right
image. The positive examples are collected by aligning the two patches
correctly (based on ground truth provided by LIDAR), while the negative
examples are intentionally misaligned.

filters in L1. The best hyperparameters of the network (such as the number
of layers, the number of neurons in each layer, and the size of input patches)
will differ from one dataset to another. We chose this architecture because
it performed well on the KITTI stereo dataset.

Matching cost

The matching cost CCNN(p,d) is computed directly from the output of the
network:

CCNN(p,d) = fneg(< PL
9×9(p),PR

9×9(pd)>), (4)

where fneg(< PL,PR >) is the output of the network for the negative class
when run on input patches PL and PR.

Post-processing

The post-processing steps we used were influenced by Mei et al. [3]. Match-
ing costs were combined between neighboring pixels with similar image in-
tensities using cross-based cost aggregation. Smoothness constraints were
enforced by semiglobal matching and a left-right consistency check was
used to detect and eliminate errors in occluded regions. We performed sub-
pixel enhancement and applied a median filter and a bilateral filter to obtain
the final disparity map.

[1] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun.
Vision meets robotics: The KITTI dataset. International Journal of
Robotics Research (IJRR), 2013.

[2] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[3] Xing Mei, Xun Sun, Mingcai Zhou, Haitao Wang, Xiaopeng Zhang,
et al. On building an accurate stereo matching system on graphics hard-
ware. In Computer Vision Workshops (ICCV Workshops), 2011 IEEE
International Conference on, pages 467–474. IEEE, 2011.

http://www.cv-foundation.org/openaccess/CVPR2015.py
http://www.cv-foundation.org/openaccess/CVPR2015.py

