
Computing the Stereo Matching Cost with a Convolutional Neural Network

Jure Žbontar
University of Ljubljana

jure.zbontar@fri.uni-lj.si

Yann LeCun
New York University
yann@cs.nyu.edu

Abstract

We present a method for extracting depth information
from a rectified image pair. We train a convolutional neu-
ral network to predict how well two image patches match
and use it to compute the stereo matching cost. The cost
is refined by cross-based cost aggregation and semiglobal
matching, followed by a left-right consistency check to elim-
inate errors in the occluded regions. Our stereo method
achieves an error rate of 2.61 % on the KITTI stereo dataset
and is currently (August 2014) the top performing method
on this dataset.

1. Introduction

Consider the following problem: given two images taken
from cameras at different horizontal positions, the goal is
to compute the disparity d for each pixel in the left image.
Disparity refers to the difference in horizontal location of
an object in the left and right image—an object at position
(x, y) in the left image will appear at position (x− d, y) in
the right image. Knowing the disparity d of an object, we
can compute its depth z (i.e. the distance from the object to
the camera) by using the following relation:

z =
fB

d
, (1)

where f is the focal length of the camera and B is the dis-
tance between the camera centers.

The described problem is a subproblem of stereo recon-
struction, where the goal is to extract 3D shape from one
or more images. According to the taxonomy of Scharstein
and Szeliski [14], a typical stereo algorithm consists of four
steps: (1) matching cost computation, (2) cost aggregation,
(3) optimization, and (4) disparity refinement. Following
Hirschmuller and Scharstein [5], we refer to steps (1) and
(2) as computing the matching cost and steps (3) and (4) as
the stereo method.

We propose training a convolutional neural network [9]
on pairs of small image patches where the true disparity is

known (e.g. obtained by LIDAR). The output of the net-
work is used to initialize the matching cost between a pair
of patches. Matching costs are combined between neighbor-
ing pixels with similar image intensities using cross-based
cost aggregation. Smoothness constraints are enforced by
semiglobal matching and a left-right consistency check is
used to detect and eliminate errors in occluded regions. We
perform subpixel enhancement and apply a median filter
and a bilateral filter to obtain the final disparity map. Fig-
ure 1 depicts the inputs to and the output from our method.
The two contributions of this paper are:

• We describe how a convolutional neural network can
be used to compute the stereo matching cost.

• We achieve an error rate of 2.61 % on the KITTI
stereo dataset, improving on the previous best result
of 2.83 %.

2. Related work
Before the introduction of large stereo datasets [2, 13],

relatively few stereo algorithms used ground-truth informa-
tion to learn parameters of their models; in this section, we
review the ones that did. For a general overview of stereo
algorithms see [14].

Kong and Tao [6] used sum of squared distances to com-
pute an initial matching cost. They trained a model to pre-
dict the probability distribution over three classes: the ini-
tial disparity is correct, the initial disparity is incorrect due
to fattening of a foreground object, and the initial disparity
is incorrect due to other reasons. The predicted probabil-
ities were used to adjust the initial matching cost. Kong
and Tao [7] later extend their work by combining predic-
tions obtained by computing normalized cross-correlation
over different window sizes and centers. Peris et al. [12]
initialized the matching cost with AD-Census [11] and used
multiclass linear discriminant analysis to learn a mapping
from the computed matching cost to the final disparity.

Ground-truth data was also used to learn parameters of
graphical models. Zhang and Seitz [22] used an alterna-
tive optimization algorithm to estimate optimal values of
Markov random field hyperparameters. Scharstein and Pal

1

Left input image

Right input image

Output disparity map

1.7 m90 m 20 m

Figure 1. The input is a pair of images from the left and right camera. The two input images differ mostly in horizontal locations of objects.
Note that objects closer to the camera have larger disparities than objects farther away. The output is a dense disparity map shown on the
right, with warmer colors representing larger values of disparity (and smaller values of depth).

[13] constructed a new dataset of 30 stereo pairs and used
it to learn parameters of a conditional random field. Li
and Huttenlocher [10] presented a conditional random field
model with a non-parametric cost function and used a struc-
tured support vector machine to learn the model parameters.

Recent work [3, 15] focused on estimating the confi-
dence of the computed matching cost. Haeusler et al. [3]
used a random forest classifier to combine several confi-
dence measures. Similarly, Spyropoulos et al. [15] trained
a random forest classifier to predict the confidence of the
matching cost and used the predictions as soft constraints
in a Markov random field to decrease the error of the stereo
method.

3. Computing the matching cost
A typical stereo algorithm begins by computing a match-

ing costC(p, d) at each position p for all disparities d under
consideration. A simple example is the sum of absolute dif-
ferences:

CAD(p, d) =
∑

q∈Np

|IL(q)− IR(qd)|, (2)

where IL(p) and IR(p) are image intensities at position p
of the left and right image and Np is the set of locations
within a fixed rectangular window centered at p. We use
bold lowercase letters (p, q, and r) to denote pairs of real
numbers. Appending a lowercase d has the following mean-
ing: if p = (x, y) then pd = (x− d, y).

Equation (2) can be interpreted as measuring the cost as-
sociated with matching a patch from the left image, centered
at position p, with a patch from the right image, centered at
position pd. Since examples of good and bad matches can
be obtained from publicly available datasets, e.g. KITTI [2]
and Middlebury [14], we can attempt to solve the matching
problem by a supervised learning approach. Inspired by the
successful applications of convolutional neural networks to
vision problems [8], we used them to evaluate how well two
small image patches match.

3.1. Creating the dataset

A training example comprises two patches, one from the
left and one from the right image:

< PL
9×9(p),PR

9×9(q) >, (3)

where PL
9×9(p) denotes a 9 × 9 patch from the left image,

centered at p = (x, y). For each location where the true
disparity d is known, we extract one negative and one posi-
tive example. A negative example is obtained by setting the
center of the right patch q to

q = (x− d+ oneg, y), (4)

where oneg is an offset corrupting the match, chosen ran-
domly from the set {−Nhi, . . . ,−Nlo, Nlo, . . . , Nhi}. Simi-
larly, a positive example is derived by setting

q = (x− d+ opos, y), (5)

where opos is chosen randomly from the set
{−Phi, . . . , Phi}. The reason for including opos, in-
stead of setting it to zero, has to do with the stereo method
used later on. In particular, we found that cross-based cost
aggregation performs better when the network assigns low
matching costs to good matches as well as near matches.
Nlo, Nhi, Phi, and the size of the image patches n are
hyperparameters of the method.

3.2. Network architecture

The architecture we used is depicted in Figure 2. The
network consists of eight layers, L1 through L8. The
first layer is convolutional, while all other layers are fully-
connected. The inputs to the network are two 9 × 9 gray
image patches. The first convolutional layer consists of 32
kernels of size 5 × 5 × 1. Layers L2 and L3 are fully-
connected with 200 neurons each. After L3 the two 200 di-
mensional vectors are concatenated into a 400 dimensional
vector and passed through four fully-connected layers, L4

9

9

5

5

5

5
32

200

200

400

300

300

300

300

2

9

9

5

5

5

5
32

200

200

Left image patch Right image patch

L1:

L2:

L3:

L4:

L5:

L6:

L7:

L8:

concatenate

Figure 2. The architecture of our convolutional neural network.

through L7, with 300 neurons each. The final layer, L8,
projects the output to two real numbers that are fed through
a softmax function, producing a distribution over the two
classes (good match and bad match). The weights in L1,
L2, and L3 of the networks for the left and right image
patch are tied. Rectified linear units follow each layer, ex-
cept L8. We did not use pooling in our architecture. The
network contains almost 600 thousand parameters. The ar-
chitecture is appropriate for gray images, but can easily be
extended to handle RGB images by learning 5 × 5 × 3, in-
stead of 5 × 5 × 1 filters in L1. The best hyperparameters
of the network (such as the number of layers, the number of
neurons in each layer, and the size of input patches) will dif-
fer from one dataset to another. We chose this architecture
because it performed well on the KITTI stereo dataset.

3.3. Matching cost

The matching costCCNN(p, d) is computed directly from
the output of the network:

CCNN(p, d) = fneg(< PL
9×9(p),PR

9×9(pd) >), (6)

where fneg(< PL,PR >) is the output of the network for
the negative class when run on input patches PL and PR.

Naively, we would have to perform the forward pass for
each image location p and each disparity d under consider-
ation. The following three implementation details kept the
runtime manageable:

1. The output of layers L1, L2, and L3 need to be com-
puted only once per location p and need not be recom-
puted for every disparity d.

2. The output of L3 can be computed for all loca-
tions in a single forward pass by feeding the net-
work full-resolution images, instead of 9 × 9 image
patches. To achieve this, we apply layers L2 and L3
convolutionally—layerL2 with filters of size 5×5×32
and layer L3 with filters of size 1× 1× 200, both out-
putting 200 feature maps.

3. Similarly, L4 through L8 can be replaced with convo-
lutional filters of size 1 × 1 in order to compute the
output of all locations in a single forward pass. Unfor-
tunately, we still have to perform the forward pass for
each disparity under consideration.

4. Stereo method

In order to meaningfully evaluate the matching cost, we
need to pair it with a stereo method. The stereo method we
used was influenced by Mei et al. [11].

4.1. Cross-based cost aggregation

Information from neighboring pixels can be combined
by averaging the matching cost over a fixed window. This
approach fails near depth discontinuities where the assump-
tion of constant depth within a window is violated. We
might prefer a method that adaptively selects the neighbor-
hood for each pixel so that support is collected only from
pixels with similar disparities. In cross-based cost aggrega-
tion [21] we build a local neighborhood around each loca-
tion comprising pixels with similar image intensity values.

Cross-based cost aggregation begins by constructing an
upright cross at each position. The left arm pl at position p
extends left as long as the following two conditions hold:

• |I(p) − I(pl)| < τ . The absolute difference in image
intensities at positions p and pl is smaller than τ .

• ‖p − pl‖ < η. The horizontal distance (or vertical
distance, in case of top and bottom arms) between p
and pl is less than η.

The right, bottom, and top arms are constructed analo-
gously. Once the four arms are known, we can define the
support region U(p) as the union of horizontal arms of all
positions q laying on p’s vertical arm (see Figure 3). Zhang

p

q

right armleft arm

bottom arm

top arm

horizontal arms of q

pl

Figure 3. The support region for position p, is the union of hori-
zontal arms of all positions q on p’s vertical arm.

et al. [21] suggest that aggregation should consider the sup-
port regions of both images in a stereo pair. Let UL and UR

denote the support regions in the left and right image. We
define the combined support region Ud as

Ud(p) = {q|q ∈ UL(p),qd ∈ UR(pd)}. (7)

The matching cost is averaged over the combined support
region:

C0
CBCA(p, d) = CCNN(p, d), (8)

Ci
CBCA(p, d) =

1

|Ud(p)|
∑

q∈Ud(p)

Ci−1
CBCA(q, d), (9)

where i is the iteration number. We repeat the averag-
ing four times; the output of cross-based cost aggregation is
C4

CBCA.

4.2. Semiglobal matching

We refine the matching cost by enforcing smoothness
constraints on the disparity image. Following Hirschmuller
[4], we define an energy function E(D) that depends on the

disparity image D:

E(D) =
∑

p

(
C4

CBCA(p, D(p))

+
∑

q∈Np

P1 × 1{|D(p)−D(q)| = 1}

+
∑

q∈Np

P2 × 1{|D(p)−D(q)| > 1}
)
, (10)

where 1{·} denotes the indicator function. The first term
penalizes disparities D(p) with high matching costs. The
second term adds a penalty P1 when the disparity of neigh-
boring pixels differ by one. The third term adds a larger
penalty P2 when the neighboring disparities differ by more
than one. Rather than minimizing E(D) in 2D, we per-
form the minimization in a single direction with dynamic
programming. This solution introduces unwanted streak-
ing effects, since there is no incentive to make the disparity
image smooth in the directions we are not optimizing over.
In semiglobal matching we minimize the energy E(D) in
many directions and average to obtain the final result. Al-
though Hirschmuller [4] suggests choosing sixteen direc-
tion, we only optimized along the two horizontal and the
two vertical directions; adding the diagonal directions did
not improve the accuracy of our system.

To minimize E(D) in direction r, we define a matching
cost Cr(p, d) with the following recurrence relation:

Cr(p, d) = C4
CBCA(p, d)−min

k
Cr(p− r, k)

+ min

{
Cr(p− r, d), Cr(p− r, d− 1) + P1,

Cr(p− r, d+ 1) + P1,min
k
Cr(p− r, k) + P2

}
. (11)

The second term is included to prevent values of Cr(p, d)
from growing too large and does not affect the optimal dis-
parity map. The parameters P1 and P2 are set according to
the image gradient so that jumps in disparity coincide with
edges in the image. Let D1 = |IL(p) − IL(p − r)| and
D2 = |IR(pd)− IR(pd− r)|. We set P1 and P2 according
to the following rules:

P1 = Π1, P2 = Π2 if D1 < τSO, D2 < τSO,
P1 = Π1/4, P2 = Π2/4 if D1 ≥ τSO, D2 < τSO,
P1 = Π1/4, P2 = Π2/4 if D1 < τSO, D2 ≥ τSO,
P1 = Π1/10, P2 = Π2/10 if D1 ≥ τSO, D2 ≥ τSO;

where Π1, Π2, and τSO are hyperparameters. The value
of P1 is halved when minimizing in the vertical directions.
The final costCSGM(p, d) is computed by taking the average
across all four directions:

CSGM(p, d) =
1

4

∑
r

Cr(p, d). (12)

After semiglobal matching we repeat cross-based cost ag-
gregation, as described in the previous section.

4.3. Computing the disparity image

The disparity image D is computed by the winner-take-
all strategy, i.e. by finding the disparity d that minimizes
C(p, d),

D(p) = argmin
d
C(p, d). (13)

4.3.1 Interpolation

Let DL denote the disparity map obtained by treating the
left image as the reference image—this was the case so far,
i.e. DL(p) = D(p)—and let DR denote the disparity map
obtained by treating the right image as the reference im-
age. Both DL and DR contain errors in occluded regions.
We attempt to detect these errors by performing a left-right
consistency check. We label each position p as either

correct if |d−DR(pd)| ≤ 1 for d = DL(p),
mismatch if |d−DR(pd)| ≤ 1 for any other d,
occlusion otherwise.

For positions marked as occlusion, we want the new dispar-
ity value to come from the background. We interpolate by
moving left until we find a position labeled correct and use
its value. For positions marked as mismatch, we find the
nearest correct pixels in 16 different directions and use the
median of their disparities for interpolation. We refer to the
interpolated disparity map as DINT.

4.3.2 Subpixel enhancement

Subpixel enhancement provides an easy way to increase the
resolution of a stereo algorithm. We fit a quadratic curve
through the neighboring costs to obtain a new disparity im-
age:

DSE(p) = d− C+ − C−
2(C+ − 2C + C−)

, (14)

where d = DINT(p), C− = CSGM(p, d − 1), C =
CSGM(p, d), and C+ = CSGM(p, d+ 1).

4.3.3 Refinement

The size of the disparity image DSE is smaller than the size
of the original image, due to the bordering effects of convo-
lution. The disparity image is enlarged to match the size of
the input by copying the disparities of the border pixels. We
proceed by applying a 5× 5 median filter and the following
bilateral filter:

DBF(p) =
1

W (p)

∑
q∈Np

DSE(q) · g(‖p− q‖)

· 1{|IL(p)− IL(q)| < τBF}, (15)

where g(x) is the probability density function of a zero
mean normal distribution with standard deviation σ and
W (p) is the normalizing constant:

W (p) =
∑

q∈Np

g(‖p−q‖)·1{|IL(p)−IL(q)| < τBF}. (16)

τBF and σ are hyperparameters. DBF is the final output of
our stereo method.

5. Experimental results
We evaluate our method on the KITTI stereo dataset,

because of its large training set size required to learn the
weights of the convolutional neural network.

5.1. KITTI stereo dataset

The KITTI stereo dataset [2] is a collection of gray im-
age pairs taken from two video cameras mounted on the
roof of a car, roughly 54 centimeters apart. The images
are recorded while driving in and around the city of Karl-
sruhe, in sunny and cloudy weather, at daytime. The dataset
comprises 194 training and 195 test image pairs at resolu-
tion 1240 × 376. Each image pair is rectified, i.e. trans-
formed in such a way that an object appears on the same
vertical position in both images. A rotating laser scan-
ner, mounted behind the left camera, provides ground truth
depth. The true disparities for the test set are withheld and
an online leaderboard1 is provided where researchers can
evaluate their method on the test set. Submissions are al-
lowed only once every three days. The goal of the KITTI
stereo dataset is to predict the disparity for each pixel on
the left image. Error is measured by the percentage of pix-
els where the true disparity and the predicted disparity differ
by more than three pixels. Translated into depth, this means
that, for example, the error tolerance is ±3 centimeters for
objects 2 meters from the camera and ±80 centimeters for
objects 10 meters from the camera.

5.2. Details of learning

We train the network using stochastic gradient descent
to minimize the cross-entropy loss. The batch size was set
to 128. We trained for 16 epochs with the learning rate ini-
tially set to 0.01 and decreased by a factor of 10 on the 12th

and 15th iteration. We shuffle the training examples prior to
learning. From the 194 training image pairs we extracted
45 million examples. Half belonging to the positive class;
half to the negative class. We preprocessed each image by
subtracting the mean and dividing by the standard deviation
of its pixel intensity values. The stereo method is imple-
mented in CUDA, while the network training is done with

1http://www.cvlibs.net/datasets/kitti/eval\
_stereo_flow.php?benchmark=stereo

the Torch7 environment [1]. The hyperparameters of the
stereo method were:

Nlo = 4, η = 4, Π1 = 1, σ = 5.656,

Nhi = 8, τ = 0.0442, Π2 = 32, τBF = 5,

Phi = 1, τSO = 0.0625.

5.3. Results

Our method achieves an error rate of 2.61 % on the
KITTI stereo test set and is currently ranked first on the on-
line leaderboard. Table 1 compares the error rates of the
best performing stereo algorithms on this dataset.

Rank Method Error
1 MC-CNN This paper 2.61 %
2 SPS-StFl Yamaguchi et al. [20] 2.83 %
3 VC-SF Vogel et al. [16] 3.05 %
4 CoP Anonymous submission 3.30 %
5 SPS-St Yamaguchi et al. [20] 3.39 %
6 PCBP-SS Yamaguchi et al. [19] 3.40 %
7 DDS-SS Anonymous submission 3.83 %
8 StereoSLIC Yamaguchi et al. [19] 3.92 %
9 PR-Sf+E Vogel et al. [17] 4.02 %
10 PCBP Yamaguchi et al. [18] 4.04 %

Table 1. The KITTI stereo leaderboard as it stands in November
2014.

A selected set of examples, together with predictions
from our method, are shown in Figure 5.

5.4. Runtime

We measure the runtime of our implementation on a
computer with a Nvidia GeForce GTX Titan GPU. Train-
ing takes 5 hours. Predicting a single image pair takes 100
seconds. It is evident from Table 2 that the majority of time
during prediction is spent in the forward pass of the convo-
lutional neural network.

Component Runtime
Convolutional neural network 95 s
Semiglobal matching 3 s
Cross-based cost aggregation 2 s
Everything else 0.03 s

Table 2. Time required for prediction of each component.

5.5. Training set size

We would like to know if more training data would lead
to a better stereo method. To answer this question, we train
our convolutional neural network on many instances of the
KITTI stereo dataset while varying the training set size. The
results of the experiment are depicted in Figure 4. We ob-

20 40 60 80 100 120 140 160

Number of training stereo pairs

3.25 %

3.3 %

3.35 %

3.4 %

3.45 %

3.5 %

3.55 %

3.6 %

3.65 %

E
rr

or

Figure 4. The error on the test set as a function of the number of
stereo pairs in the training set.

serve an almost linear relationship between the training set
size and error on the test set. These results imply that our
method will improve as larger datasets become available in
the future.

6. Conclusion
Our result on the KITTI stereo dataset seems to suggest

that convolutional neural networks are a good fit for com-
puting the stereo matching cost. Training on bigger datasets
will reduce the error rate even further. Using supervised
learning in the stereo method itself could also be benefi-
cial. Our method is not yet suitable for real-time applica-
tions such as robot navigation. Future work will focus on
improving the network’s runtime performance.

References
[1] Collobert, R., Kavukcuoglu, K., and Farabet, C. (2011).

Torch7: A matlab-like environment for machine learn-
ing. In BigLearn, NIPS Workshop, number EPFL-
CONF-192376.

[2] Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013).
Vision meets robotics: The KITTI dataset. International
Journal of Robotics Research (IJRR).

[3] Haeusler, R., Nair, R., and Kondermann, D. (2013). En-
semble learning for confidence measures in stereo vision.
In Computer Vision and Pattern Recognition (CVPR),
2013 IEEE Conference on, pages 305–312. IEEE.

[4] Hirschmuller, H. (2008). Stereo processing by
semiglobal matching and mutual information. Pattern
Analysis and Machine Intelligence, IEEE Transactions
on, 30(2):328–341.

[5] Hirschmuller, H. and Scharstein, D. (2009). Evalua-
tion of stereo matching costs on images with radiometric

Figure 5. The left column displays the left input image, while the right column displays the output of our stereo method. Examples are
sorted by difficulty, with easy examples appearing at the top. Some of the difficulties include reflective surfaces, occlusions, as well as
regions with many jumps in disparity, e.g. fences and shrubbery. The examples towards the bottom were selected to highlight the flaws in
our method and to demonstrate the inherent difficulties of stereo matching on real-world images.

differences. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 31(9):1582–1599.

[6] Kong, D. and Tao, H. (2004). A method for learning
matching errors for stereo computation. In BMVC, pages
1–10.

[7] Kong, D. and Tao, H. (2006). Stereo matching via

learning multiple experts behaviors. In BMVC, pages
97–106.

[8] Krizhevsky, A., Sutskever, I., and Hinton, G. (2012).
Imagenet classification with deep convolutional neural
networks. In Advances in Neural Information Processing
Systems 25, pages 1106–1114.

[9] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P.

(1998). Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–
2324.

[10] Li, Y. and Huttenlocher, D. P. (2008). Learning for
stereo vision using the structured support vector ma-
chine. In Computer Vision and Pattern Recognition,
2008. CVPR 2008. IEEE Conference on, pages 1–8.
IEEE.

[11] Mei, X., Sun, X., Zhou, M., Wang, H., Zhang, X.,
et al. (2011). On building an accurate stereo matching
system on graphics hardware. In Computer Vision Work-
shops (ICCV Workshops), 2011 IEEE International Con-
ference on, pages 467–474. IEEE.

[12] Peris, M., Maki, A., Martull, S., Ohkawa, Y., and
Fukui, K. (2012). Towards a simulation driven stereo
vision system. In Pattern Recognition (ICPR), 2012 21st
International Conference on, pages 1038–1042. IEEE.

[13] Scharstein, D. and Pal, C. (2007). Learning condi-
tional random fields for stereo. In Computer Vision and
Pattern Recognition, 2007. CVPR’07. IEEE Conference
on, pages 1–8. IEEE.

[14] Scharstein, D. and Szeliski, R. (2002). A taxon-
omy and evaluation of dense two-frame stereo corre-
spondence algorithms. International journal of computer
vision, 47(1-3):7–42.

[15] Spyropoulos, A., Komodakis, N., and Mordohai, P.
(2014). Learning to detect ground control points for im-
proving the accuracy of stereo matching. In Computer
Vision and Pattern Recognition (CVPR), 2014 IEEE
Conference on, pages 1621–1628. IEEE.

[16] Vogel, C., Roth, S., and Schindler, K. (2014).
View-consistent 3d scene flow estimation over multiple
frames. In Computer Vision–ECCV 2014, pages 263–
278. Springer.

[17] Vogel, C., Schindler, K., and Roth, S. (2013). Piece-
wise rigid scene flow. In Computer Vision (ICCV), 2013
IEEE International Conference on, pages 1377–1384.
IEEE.

[18] Yamaguchi, K., Hazan, T., McAllester, D., and Urta-
sun, R. (2012). Continuous markov random fields for ro-
bust stereo estimation. In Computer Vision–ECCV 2012,
pages 45–58. Springer.

[19] Yamaguchi, K., McAllester, D., and Urtasun, R.
(2013). Robust monocular epipolar flow estimation. In
Computer Vision and Pattern Recognition (CVPR), 2013
IEEE Conference on, pages 1862–1869. IEEE.

[20] Yamaguchi, K., McAllester, D., and Urtasun, R.
(2014). Efficient joint segmentation, occlusion labeling,
stereo and flow estimation. In Computer Vision–ECCV
2014, pages 756–771. Springer.

[21] Zhang, K., Lu, J., and Lafruit, G. (2009). Cross-based
local stereo matching using orthogonal integral images.
Circuits and Systems for Video Technology, IEEE Trans-
actions on, 19(7):1073–1079.

[22] Zhang, L. and Seitz, S. M. (2007). Estimating opti-
mal parameters for mrf stereo from a single image pair.
Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on, 29(2):331–342.

