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Boosting family algorithms achieve considerable performance for object de-
tection tasks. However, since the boosting procedure focuses on the hard
samples gradually, it gets more and more difficult to find the weak classifiers
that can efficiently improve the classification power of the strong classifier.
As a result, the training may converge very slowly or can not converge at all.
In this paper, we propose a novel basis mapping approach in the boosting
framework to solve the above problem. The basis mapping maps the origi-
nal samples into a constrained region referring to the current hard-to-classify
samples (namely basis sample) in each boosting round, which makes pos-
itive patterns with less inner-class variation and easier to be discriminated
from negative patterns. As a result, boosting on such mapped region is much
more effective than that on the original sample space. In addition, we show
that the weak classifier based on basis mapping is an approximation of us-
ing kernel methods, while keeping the computation cost same as the linear
methods, so that both the detection accuracy and the training efficiency of
the boosted classifier will be improved.

We define the basis mapping as a process that condenses the sample
space into a region by referring to a hard sample, namely basis sample.
Formally, we formulate the basis mapping which maps the original space
Rm to a new space

Φ(x) = ϕ(x,xbasis) ϕ : Rm×Rm→ Rn. (1)

We present a kind of mapping that restricts the mapped samples to a “hyper-
sphere” around the Φ(xbasis) with radius 2||Φ(xbasis)|| as

∀x ∈ Rm : ||Φ(x)−Φ(xbasis)|| ≤ 2||Φ(xbasis)||, (2)

where || • || represents the sum of absolute x(i), and x(i) is the ith dimension
of x. We further a sufficient condition of (2) to constrain the mapping

||Φ(x)−Φ(xbasis)|| ≤ ||Φ(x)||+ ||Φ(xbasis)|| ≤ ||2Φ(xbasis)||. (3)

Therefore, we use (4) as a constraint of the mapping function

∀x ∈ Rm : ||Φ(x)|| ≤ ||Φ(xbasis)||. (4)

Substituting ϕ into (4), it can be seen that ||ϕ(•,•)|| is a kind of sim-
ilarity measure for vectors in Rm. In our case, the histogram features are
used. Therefore, we adopt the similarity metrics of histograms, to conduct
the function ||ϕ(•,•)||. Histogram intersection [1] is usually used as a sim-
ilarity metric for histogram-based representations of images. We define the
Histogram Intersection Mapping (HIM) as equation (5). Each dimension of
the mapped vector can be calculated as

Φ
(i)(x) = ϕ

(i)
HIM(x,xbasis) = min(x(i),x(i)basis). (5)

To evaluate the effectiveness of the HIM, we train a classifier using
HOG descriptor and LogitBoost algorithm on INRIA pedestrian dataset.
The sample distributions on the first selected HOG descriptor are plotted
in Fig. 1, where the referred basis sample is (9, 10). It could be seen that the
HIM maps the original samples into a condensed space, where the pattern
distributions become much more separable. So that it is easier to learn a
classification hyperplane in the mapped space.

Next we show that the weak classifier based on basis mapping is an ap-
proximation of applying additive kernels methods as weak classifiers in the
boosting algorithm. In boosting training, we consider the learning of weak
classifier f on x ∈ Rm. Generally, linear classification in the implicit space
can be implemented in the original space through the kernel trick. Given
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Figure 1: Sample distribution before and after HIM

a kernel function K and the corresponding function ψ in the Mercer Con-
dition, denote the optimal classification hyper-plane in the implicit space
by w∗, and the optimal classification function f ∗(x) = w∗ •ψ(x). In the
extreme case, if there is a vector x∗ ∈ Rm satisfies ψ(x∗) = w∗,

f ∗(x) = w∗ •ψ(x) = ψ(x∗)•ψ(x) = K(x,x∗). (6)

So the only problem is to find out such an x∗. Unfortunately, in most of the
cases, ψ is not invertible or even ψ itself could not be explicitly described.
But in boosting framework, we could approximate x∗ by selecting one of
the current training samples x′. The optimal f ∗ is then approximated using

f ∗(x)≈ f (x) = w′ •ψ(x) = K(x,x′), (7)

where w′ = ψ(x′). This implies that by referring to an appropriate sample
x′, the linear classification in the implicit space could be approximated.

Then we turn back to the basis mapping. HIM is constructed based on
an additive kernel, and each dimension is independent with each other, so
(7) could be written as

f (x) = K(x,x′) =
m

∑
i=1

ϕ(x(i),x
′(i)). (8)

As mentioned above, in the boosting framework, we could use x′ to approx-
imate x∗. This is achieved by evaluating different hard samples in current
training stage to get the best one xbasis. Then (8) is achieved by (9)

f (x) =
m

∑
i=1

ϕ(x(i),x
′(i)) =

m

∑
i=1

ϕ(x(i),x(i)basis). (9)

We further fit a linear classifier based on (10) as the final weak classifier

f (x) =
m

∑
i=1

a(i)ϕ(x(i),x(i)basis)+b. (10)

(10) is the linear classification on the mapped space Φ(x) around the basis
sample. So we get the conclusion that the basis mapping is an approximation
of additive kernel classification in the original space, which significantly has
better discrimination power than simple decision stump or linear weak clas-
sifiers. In general, the performance of a boosted classifier mainly depends
on the weak classifiers [2]. So the proposed basis mapping will contribute
to the overall accuracy of the boosted classifier.
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