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Abstract

We present an approach for highly accurate bottom-
up object segmentation. Given an image, the approach
rapidly generates a set of regions that delineate candidate
objects in the image. The key idea is to train an ensem-
ble of figure-ground segmentation models. The ensemble
is trained jointly, enabling individual models to specialize
and complement each other. We reduce ensemble training
to a sequence of uncapacitated facility location problems
and show that highly accurate segmentation ensembles can
be trained by combinatorial optimization. The training pro-
cedure jointly optimizes the size of the ensemble, its compo-
sition, and the parameters of incorporated models, all for
the same objective. The ensembles operate on elementary
image features, enabling rapid image analysis. Extensive
experiments demonstrate that the presented approach out-
performs prior object proposal algorithms by a significant
margin, while having the lowest running time. The trained
ensembles generalize across datasets, indicating that the
presented approach is capable of learning a generally ap-
plicable model of bottom-up segmentation.

1. Introduction

Object proposal algorithms aim to identify a small set
of regions such that each object in the image is approxi-
mately delineated by at least one proposed region. Object
proposals can be computed bottom-up, based only on low-
level boundary detection and category-independent group-
ing [7, 12, 32]. They are used as a starting point for both
object detection and semantic segmentation, and have be-
come a standard first step in state-of-the-art image analysis
pipelines [5, 6, 16, 17, 32].

To support diverse image parsing tasks, object pro-
posal algorithms must have a number of characteristics.
They need to provide region proposals with informative
shape for semantic segmentation and instance segmenta-
tion [5,6,16,17,23]. They must have high recall, producing
corresponding regions for as many genuine objects as possi-
ble. They must generate a manageable number of proposals
to limit unnecessary workload. And they must be fast to

Figure 1: Object proposals for three images from the Microsoft
COCO dataset. From left to right: input images, ground-truth in-
stance segmentations, region proposals generated by the presented
approach. Note the accurate instance proposals in the top and mid-
dle rows, despite color and texture similarity across instances. In
the bottom row, the trained ensemble correctly identifies the white
surfboard as a single object with three connected components.

support high-performance image parsing [16, 32].
In this paper, we present an object proposal algorithm

that has all of these characteristics. The key idea is to
optimize an ensemble of figure-ground segmentation mod-
els. Given a new image, the algorithm simply applies each
model and outputs all of the produced foreground segments.
The algorithm is fast since each model is highly efficient
and operates on elementary image features. Proposals pro-
duced by a trained ensemble are shown in Figure 1.

A number of prior object proposal techniques can
be viewed as ensembles of binary segmentation models
[7, 12, 19]. However, in each case all models used the same

potentials and differed only in one or two hyperparameters,
which were varied according to a predefined schedule. In
some cases, diversity was achieved at test time by means of
a computationally expensive classifier that was used to rank
the proposals [7, 12].

In contrast, the presented approach optimizes a diverse
ensemble of segmentation models globally during training.
The training objective is the accuracy of the generated pro-
posal set balanced by its size. We show that the training
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objective can be expressed in terms of the uncapacitated
facility location problem and optimized by combinatorial
techniques. The training jointly optimizes the size of the
ensemble, its composition, and the parameters of the incor-
porated models, all for the same objective. The number of
generated proposals can be controlled at training time and
there is no need for test-time ranking.

We conduct extensive experiments on the Pascal
VOC2012 dataset and the recent Microsoft COCO dataset,
comparing the performance of the presented approach to
state-of-the-art object proposal algorithms. We evaluate
both region proposal accuracy and bounding box proposal
accuracy. In region proposal accuracy, our approach out-
performs prior methods by a wide margin, while having the
lowest running time. For example, the approach achieves
94% recall on the VOC 2012 dataset as measured by de-
tailed shape overlap: the highest ever reported. Our ap-
proach also yields the highest bounding box proposal ac-
curacy simply by taking the bounding boxes of the pro-
posed regions. We also demonstrate that the segmenta-
tion ensembles trained by our approach generalize across
datasets. This suggests that the presented approach is ca-
pable of learning a generally applicable model of accurate
bottom-up object segmentation.

2. Related Work
Object detection pipelines based on sliding windows be-

came widespread following the work of Viola and Jones
[9, 14, 33]. Since performing detailed classification on
all candidate windows induces unnecessary computational
costs, a number of approaches have been developed to prune
and rank rectangular windows, thus allocating the computa-
tional budget to the most promising candidates [1,8,22,35].
The recent ranking method of Zitnick and Dollár demon-
strates both high efficiency and high recall [35]. Unlike
these works, we focus on generating region proposals with
detailed shape cues, in order to support diverse image analy-
sis tasks including semantic segmentation and instance seg-
mentation [5, 6, 16, 17, 23]. Although not the primary focus
of our work, simply taking the bounding boxes of the re-
gions identified by our model yields state-of-the-art results
in bounding box proposal generation.

The use of bottom-up segmentation to generate candi-
date regions for object detection was advocated by Mal-
isiewicz and Efros [25, 26], who obtained a pool of candi-
date regions by applying multiple segmentation algorithms
with varying parameters, collecting the resulting segments,
and adding regions obtained by merging adjacent segments.
This built on the work of Russell et al. [29], who used a
similar approach for unsupervised object discovery in im-
age collections. Using multiple segmentations and group-
ing adjacent segments have become common ingredients in
subsequent proposal algorithms [2, 3, 27, 32].

An alternative approach to region candidate genera-
tion is to compute many figure-ground segmentations and
add each computed foreground region to the candidate set
[7, 12, 19, 21]. Proposals are generated by applying a spec-
ified set of segmentation models to different locations in
the image. The recent algorithm of Krähenbühl and Koltun
achieves state-of-the-art accuracy using this approach [21].
Our method also uses figure-ground segmentations, but the
proposals are generated by a diverse ensemble that com-
prises multiple model types. The size and composition of
the ensemble are optimized during training to maximize the
accuracy of the candidate set relative to its size.

3. Model
Our approach optimizes an ensemble

M = {M1, . . . ,MK} of binary segmentation models.
We primarily use two types of models. The first type is a
global CRF that produces a single segmentation for a given
image. The second type is a localized CRF that takes a
given image location into account. The specified location
serves as an optional attention mechanism. The application
of a trained ensemble to an image is illustrated in Figure 2.

Let τk be the type of model Mk (e.g, global or localized)
and let θk be its parameter vector. Let Xi

k be the set of
proposals produced by Mk for image Ii. If Mk is a global
CRF, |Xi

k| = 1. For a localized CRF, the number of pro-
posals equals the number of specified locations in image Ii.

Both types of models operate on a superpixel segmen-
tation of a given image. Each CRF Mk parameterizes a
probability distribution over binary partitions of the locally
connected superpixel graph (V, E). The Gibbs energy of a
partition x ∈ {0, 1}n is

E(x|Ii; θk) =
∑
u∈V

ψu(xu|Ii; θk) +
∑

(u,v)∈E

ψu,v(xu, xv|Ii; θk),

where ψu and ψu,v are unary and pairwise potentials, re-
spectively.

We use binary log-linear CRFs with submodular pair-
wise potentials. Submodular binary CRFs can efficiently
generate proposals via exact maximum a posteriori (MAP)
inference [4]. The log-linear structure enables parameter
estimation via large-margin learning [31].

Global CRF. For a global CRF model Mk, each unary
potential has the form

ψu(xu|I; θk) = 1[xu]f
>
u θk,

where fu is the unary feature vector evaluated at superpixel
u. The pairwise terms are

ψu,v(xu, xv|I; θk) = 1[xu 6=xv]f
>
u,vθk,

where fu,v is the pairwise feature vector evaluated at the
edge (u, v). All pairwise features are strictly positive and
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Figure 2: Our approach jointly trains an ensemble of binary segmentation models. Models of different type produce a different number
of region proposals. At test time, the algorithm simply applies all models in the ensemble to a given image and collects the resulting
proposals. The training procedure jointly optimizes the size and composition of the ensemble and the parameters of all models.

the pairwise parameters in θk are constrained to be non-
negative during training to guarantee submodularity. The
features are described in Section 5. This model produces a
single proposal for a given image: Xi

k = {xik}, where

xik = arg min
x

E(x|Ii; θk).

The proposal xik can vary dramatically as a function of the
parameter vector θk. We train an ensemble that incorpo-
rates multiple global models. The models share the same
feature vector, thus amortizing feature computation. Differ-
ent parameter vectors are jointly optimized during training
to maximize the performance of the ensemble.

Global CRFs effectively identify distinct objects with
characteristic global features, at the cost of only a single
proposal per model. During training, different global mod-
els can specialize in different commonly occurring object
appearances. However, global features are generally not
sufficiently expressive to precisely delineate smaller and
less salient objects, and do not effectively distinguish mul-
tiple instances with similar appearance. For these reasons,
we also use localized models.

Localized CRF. Localized models have the same form as
the global CRFs, but their unary feature vector fu(s) incor-
porates features that are defined in terms of a seed super-
pixel s ∈ V . The seed serves as a locus of attention. The
vector fu(s) includes all features used by the global models
plus simple features that summarize the distance between
u and s in the superpixel graph. The distance features and
the distribution of seeds in an image are described in Sec-
tion 5. Note that the localized models are not constrained by
any hardcoded dependence on the seeds, in contrast to prior
work that interpreted seed locations as hard constraints and
generated regions that enclosed the seeds [7, 12, 21]. Our
training procedure makes the seed distance features avail-
able to the localized models alongside the global features.
The distance features can be utilized by different models in

different ways. For example, we have observed localized
models that specialize in delineating objects that lie away
from the given seed.

A localized model produces |Xi
k| = |Si| proposals for a

given image Ii, where Si is the set of seeds:

Xi
k =

{
xik(s) : s ∈ Si

}
,

xik(s) = arg min
x

E(x|Ii, s; θk).

One of the benefits of localized CRFs is shift-invariance:
a model can specialize in a type of object appearance and
rely on the seeds to point out individual instances of this
appearance.

4. Training
Let O = {O1, . . . , ON} be a set of ground-truth objects.

Object Oi is represented as a binary mask over image Ii.
For convenience of exposition, assume that each image con-
tains a single ground-truth object. If a dataset image con-
tains multiple objects, it is replicated accordingly.

Consider a candidate model Mk. The loss of this model
on an image Ii is defined in terms of the minimal Jaccard
distance between object Oi and the set of proposals Xi

k:

∆(Oi,Xi
k) = min

x∈Xi
k

(
1− |O

i ∩ x|
|Oi ∪ x|

)
.

Given an ensemble M = {M1, . . . ,MK}, the loss of M
on object Oi is defined as

min
k∈{1,...,K}

∆(Oi,Xi
k).

Thus the loss of an ensemble is the loss of the most accurate
proposal. Our training objective minimizes this loss over all
training examples, balanced by the number of proposals:

minimize
M

∑
i

min
Mk∈M

∆(Oi,Xi
k) + λ

∑
Mk∈M

|Xk|, (1)



where |Xk| is the total number of distinct proposals gen-
erated by model Mk for images in the training set. The
first term in the objective minimizes the Jaccard distance
between the proposal set and the ground truth objects. The
second term penalizes the size of the proposal set. The pa-
rameter λ balances the two objectives. A small value of
λ yields ensembles that generate large proposal sets, while
setting λ → ∞ yields a model that produces a single pro-
posal.

Objective 1 optimizes over the setM. The size and com-
position of this set is optimized along with the parameter
vectors. This objective is not easily amenable to latent-
variable training methods such as expectation maximiza-
tion, which optimize parameters but not the structure of the
model [34]. To optimize the complete objective globally,
we introduce a different approach.

Facility location. Our approach reduces the training to a
sequence of combinatorial optimization problems. Specif-
ically, assume that we have generated a superset U of po-
tential models and that the ensembleM is drawn from this
candidate set:

minimize
M⊆U

∑
i

min
Mk∈M

∆(Oi,Xi
k) + λ

∑
Mk∈M

|Xk|. (2)

This is an instance of the uncapacitated facility location
problem (UFLP) [30]. The UFLP formulation concerns a
set of facilities F and a set of customersC. For each facility
k ∈ F , the cost of opening this facility is fk ∈ R+. For
each facility k ∈ F and customer i ∈ C, the cost of serving
customer i by facility k is cki. The problem is to open a
subset of the facilities and assign each customer to an open
facility such that the total cost is minimized:

minimize
Y⊆F

∑
i

min
k∈Y

cki +
∑
k∈Y

fk. (3)

Objective 2 is a UFLP with service costs cki = ∆(Oi,Xi
k)

and facility costs fk = λ|Xk|.
While uncapacitated facility location is NP-hard, it is of

great practical interest and has been extensively studied.
A number of algorithms are known to perform extremely
well, approaching the exact solution on benchmark prob-
lems within a fraction of a percent [28]. Note that the met-
ric variant of UFLP has approximation algorithms with very
strong approximation guarantees [20, 24]. While the Jac-
card distance is a metric [10], objective 2 is not a metric
UFLP. Nevertheless, the approximation algorithms them-
selves [20, 24] are known to have very good experimental
performance even in the general case [28]. Our implementa-
tion optimizes objective 2 using three algorithms [20,24,28]
and selects the lowest-cost solution.

Candidate generation. Objective 1 is optimized by solv-
ing a sequence of facility location problems on adaptively
generated candidate sets {U1, . . . ,UT }. To generate an ini-
tial candidate set U1, we sample a subset S1 ⊆ O of
the training data uniformly at random. A distinct CRF is
optimized for each sampled training example using large-
margin learning [31]. The CRF type, global or localized, is
selected uniformly at random for each training example. Let
Γ1 denote this set of models. In this first iteration, we set
U1 = Γ1. We then optimize objective 2 with the candidate
set U1 to obtain an ensembleM1.

The training proceeds iteratively. In iteration t, we sam-
ple a subset St ⊆ O uniformly at random. A new set of
models Γt is optimized by fitting a distinct CRF to each
sampled object. The model type is again selected at random
for each new CRF. We also retrain each model Mk from the
ensembleMt−1 on the training examples Ôk ⊂ O that are
best fit by this model:

Ôk =
{
Oi : ∀l 6= k. ∆(Oi,Xi

k) ≤ ∆(Oi,Xi
l)
}
.

This is an EM-style step akin to structured latent variable
training [34]. However, rather than replaceMt−1 with the
retrained models, we add the setM′t−1 of retrained models
to the candidate set Ut, along with the new models Γt and
the previous ensemble: Ut =Mt−1 ∪M′t−1 ∪ Γt. Objec-
tive 2 is then optimized with the candidate set Ut. This
yields an ensembleMt. The procedure is iterated until the
final ensemble MT is produced. We use T = 10 in all
experiments. The algorithm is summarized in Algorithm 1.

Algorithm 1: Ensemble training

M0 := ∅;
for t = 1 . . . T do

St := new training examples;
Γt := new models optimized for St;
M′t−1 := reoptimized models fromMt−1;
Ut :=Mt−1 ∪M′t−1 ∪ Γt;
Mt := UFLP(Ut);

end
ReturnMT ;

5. Implementation
We use the superpixel segmentation of Krähenbühl and

Koltun [21], which is based on the boundary detection al-
gorithm of Dollár and Zitnick [11]. The boundary detection
and superpixel segmentation provides a weighted super-
pixel graph, where the weight wu,v indicates the boundary
strength between adjacent superpixels u and v. The global
unary feature vector fu has 18 elements. We use nine RGB
color features: average color of superpixel u, average color



of the entire image, and the element-wise squared difference
between the two. We also use five position features: The
center of mass (x, y) of superpixel u normalized to [−1, 1],
as well as x2, y2, and xy. Finally, we add four boundary
distance features, using the geodesic distance of u from the
image boundary on the superpixel graph (V, E), with each
edge (i, j) ∈ E reweighted by wαi,j for α = 0, 1, 2, 3. Note
that our features are elementary: we rely on the learning al-
gorithm to find good parameter sets that utilize these simple
features as needed. The upshot is fast proposal generation
unencumbered by expensive feature evaluation.

For the localized models we add four additional ele-
ments, which summarize the distance between u and a seed
superpixel s. We use the geodesic distance between u and s
with the same four sets of edge weights.

The pairwise feature vector fu,v has five elements:
exp(−βwu,v) for β = 0, 1, 2, 3, 4. The exponent ensures
that the pairwise features are positive and the pairwise po-
tentials are submodular.

We train three types of localized models on three seed
distributions. Seeds are distributed using the seed place-
ment model of Krähenbühl and Koltun [21]. To train the
seed placement models, we partition the set of objects in the
Pascal VOC 2012 training set by size into the largest third,
the medium third, and the smallest third. Three seed place-
ment models are trained separately on these sets. The place-
ment models distribute on average 15, 70, and 200 seeds per
image, respectively.

Empty proposals are filtered out trivially. Near-duplicate
proposals are filtered out using the fast duplicate detection
of Krähenbühl and Koltun [21].

5.1. Small objects

The model types described so far – the global CRF and
the localized CRFs – operate on the same superpixel seg-
mentation. This enables rapid feature computation and in-
ference, but the quantization of the image domain has a cost.
Any partition at the superpixel level will perform poorly
for objects that are roughly the size of a single superpixel
or smaller and do not align well with superpixel bound-
aries. This is particularly relevant for the Microsoft COCO
dataset [23], where 33% of the annotated objects have an
area of 25 × 25 pixels or less. On this part of the dataset,
any proposals based on our superpixel segmentation cannot
achieve an average best overlap (ABO) above 45%. This
is in contrast to the remainder of the dataset, on which the
superpixel segmentation limits the highest achievable ABO
to 90%.

The presented ensemble training approach easily accom-
modates additional model types. We add a model type that
specifically targets small objects. This model oversegments
the image using the algorithm of Felzenszwalb and Hutten-
locher [15] and proposes all segments smaller than 1000

pixels. The model has two parameters: the color space (Lab
or HSV) and a minimum internal difference parameter used
by the Felzenszwalb-Huttenlocher algorithm. During train-
ing, this model type is simply sampled alongside the others
when a candidate model is generated. The parameters of
this model type are sampled uniformly at random. Since
the training procedure is completely general, it requires no
modifications. Advantageous small-object models are cho-
sen automatically if including them in the model set im-
proves Objective 2.

6. Results
We evaluate the presented approach on the PASCAL

VOC2012 dataset [13] and the Microsoft COCO dataset
[23]. For the PASCAL VOC2012 dataset, we train on all
segment annotations in the training set (1464 images, 3507
segmented objects) and evaluate on the validation set (1449
images, 3422 segmented objects). Bounding box proposal
accuracy is evaluated on the larger detection dataset (5823
images, 13841 bounding boxes). The Microsoft COCO
dataset is much larger, with 82783 training images and
40504 validation images. We train on a subset of 8000 train-
ing images with 62135 segmented objects and evaluate on
the complete validation set with 296492 segmented objects.
All experiments were performed on an Intel Core i7-3770K
processor clocked at 3.5 GHz. Runtimes for all methods are
reported for single-threaded execution and cover all opera-
tions, including boundary detection and oversegmentation.

To evaluate the quality of our object proposals we
use the Average Best Overlap (ABO) and α-recall mea-
sures [7, 21]. The ABO between a ground truth object set
O = {O1, . . . , ON} and a set of proposals X is computed
using the overlap between each ground truth regionOi ∈ O
and the closest object proposal x ∈ X:

ABO =
1

|O|
∑
Oi∈O

max
x∈X
J (Oi,x).

Here J is the Jaccard coefficient: J (Oi,x) = |Oi∩x|
|Oi∪x| . The

α-recall of X is the fraction of segments Oi in O for which
maxx∈X J (Oi,x) ≥ α.

We first evaluate the different components of our training
procedure and then present a set of comparisons to prior
work.

Training procedure. To evaluate different components of
our training procedure we use different variants of the pro-
cedure to train an ensemble with roughly 2200 proposals on
the VOC 2012 dataset. First, we only use the initial stage of
the procedure, in which random training examples are sam-
pled and models are optimized for individual examples. We
optimize for the composition of the ensemble using a single



Training procedure ABO p-value

Initial stage 0.749 −
EM 0.777 <0.01
EM + UFLP 0.781 <0.01
EM + New models + UFLP 0.785 <0.01

Table 1: Evaluation of different components of the training proce-
dure, using our full model with λ = 0.03 on the VOC 2012 test
set (roughly 2200 proposals). The p-value in each row measures
the statistical significance of improvement over the prior row.

round of UFLP. Second, we add T iterations of retraining, in
which each model is retrained on the objects best fit by this
model. This is an EM-style structured latent variable train-
ing procedure [34], initialized by UFLP. The third variant
adds the combinatorial (UFLP) optimization to each itera-
tion. The fourth variant is the complete procedure, which
injects new models trained on randomly sampled examples
in each iteration. The results are reported in Table 1. Each
component of the procedure improves the performance of
the trained ensemble with strong statistical significance.

6.1. VOC 2012 region accuracy

We now evaluate the accuracy of the region propos-
als produced by our approach on the VOC 2012 dataset.
The results are reported in Table 3. We compare the pre-
sented approach to six state-of-the-art object proposal algo-
rithms. The parameter λ is set to several different values
to match the different numbers of proposals produced by
each prior approach, as shown in Table 3. For each method
we measure the ABO, 50%-recall, 70%-recall, and the p-
value computed using Student’s t-test. The t-test measures
the statistical significance with which our approach outper-
forms each competing method. Each ground truth object is
treated as an independent observation. For each object and
each competing method, the test evaluates whether the set
of proposals produced by our approach has lower or equal
overlap with this object than the set of proposals produced
by the competing method.

Our approach outperforms all prior methods with strong
statistical significance (p< 0.01), except MCG [3] for
which the results are not statistically significant. Our ap-
proach also has the lowest running time for all proposal set
sizes. See Table 3 for details.

For the first tier of proposal set sizes (roughly 650 pro-
posals), our approach has the highest ABO. For the second
tier (1000-1600 proposals), our approach has the highest
ABO and outperforms the closest prior method (GOP) by 2
percentage points. For higher tiers (above 2000 proposals),
our approach has an ABO of 3 to 8 percentage points higher
than all prior approaches except MCG. Note that the recall
measures for our approach are consistently higher than for
MCG and that our algorithm is more than an order of mag-
nitude faster.

Models # prop. % best
√

med. area time

Global 214 8.0 201 0.05s
Localized (l) 1514 27.8 171 0.34s
Localized (m) 1357 23.5 116 0.31s
Localized (s) 2846 48.8 89 0.56s
Small objects 1378 8.6 14 0.16s

All 7309 100.0 115 1.43s

Table 2: Composition of an ensemble trained on the VOC 2012
dataset with λ = 0.01. The ensemble comprises global CRFs,
localized CRFs (small, medium, and large), and small object pro-
posals. For each model type we report the number of proposals
produced by models of the given type (before near-duplicate and
empty proposal removal), percentage of objects best fit by mod-
els of the given type, median area of proposals, and running time.
The percentages sum up to more than 100% because some of the
objects are fit equally well by multiple models.

The running time of our approach includes 0.5s for
boundary detection and superpixel segmentation. The re-
mainder of the running time is divided almost equally into
feature computation, multiplication of feature and parame-
ter vectors, energy minimization via graph cuts, and near-
duplicate removal.

Table 2 shows the composition of a complete ensemble,
trained on the VOC 2012 dataset with λ= 0.01. Proposal
numbers are reported before near-duplicate and empty pro-
posal removal. The global CRF produces predominantly
large proposals, which best fit roughly 8% of the objects.
Most of the proposals are generated by the localized CRFs,
which outperform the other model types for a large major-
ity of the objects. The availability of small-object models
during training has no effect on ensemble accuracy up to
about 2000 proposals. For higher proposal budgets, small-
object models improve the 70%-recall by up to 1%. The
ABO and 50%-recall for ensembles trained without small-
object models differ by less than 0.005. The results of the
presented approach in our experiments are almost entirely
due to the (global and localized) CRF models.

For high proposal budgets (above 5000), our approach
has a 50%-recall of 94%: only 6% of the objects in the VOC
2012 dataset are missed. Some of these objects are shown
in Figure 3, along with randomly sampled images from the
dataset. The missed objects are in part tiny segments, such
as very distant animals, and in part ground-truth annotations
that have poor bottom-up evidence, such as people behind
reflective car windows. As expected, for images that were
randomly sampled for Figure 3, the 50%-recall of our ap-
proach is 100%.

6.2. VOC 2012 bounding box accuracy

We evaluate the accuracy of bounding box proposals that
can be obtained with our approach by taking the bound-
ing boxes of our region proposals. We follow the evalua-



Method # prop. ABO 50%-recall 70%-recall time p-value

Our approach, λ = 0.2 635 0.732 0.861 0.634 0.8s –
CPMC [7] 646 0.704 0.785 0.609 252s <0.01
GOP [21] 652 0.720 0.844 0.632 1.0s <0.01

Global/Local [27] 1056 0.689 0.780 0.579 8s <0.01
GOP [21] 1199 0.741 0.865 0.673 1.1s <0.01
Our approach, λ = 0.1 1236 0.759 0.890 0.685 0.9s –
RIGOR [19] 1299 0.735 0.832 0.657 5s <0.01
Cat-Ind OP [12] 1536 0.718 0.821 0.624 119s <0.01

SCG [3] 2125 0.755 0.871 0.664 5s <0.01
Our approach, λ = 0.03 2133 0.785 0.924 0.733 1.1s –
MCG ranked [3] 2199 0.785 0.897 0.721 30s 0.58
GOP [21] 2286 0.756 0.877 0.699 1.4s <0.01

Our approach, λ = 0.02 2707 0.793 0.930 0.762 1.4s -
GOP [21] 4186 0.766 0.889 0.715 1.7s <0.01
Selective Search [32] 4374 0.735 0.891 0.597 2.6s <0.01
Our approach, λ = 0.01 5144 0.810 0.943 0.785 1.9s -
MCG [3] 5158 0.808 0.922 0.772 30s 0.14

Table 3: Quantitative results on the PASCAL VOC2012 dataset. Six state-of-the-art object proposal methods are compared to the presented
approach. The methods are ordered by number of proposals. The table is divided into four tiers with similar proposal set sizes within each
tier. Our approach outperforms most methods by a wide margin, with strong statistical significance, at the lowest running time.

ABO: 0.89 recall: 1.0 ABO: 0.89 recall: 1.0

ABO: 0.90 recall: 1.0 ABO: 0.71 recall: 1.0

ABO: 0.84 recall: 1.0 ABO: 0.87 recall: 1.0

ABO: 0.80 recall: 1.0 ABO: 0.71 recall: 1.0

ABO: 0.71 recall: 0.73 ABO: 0.65 recall: 0.87

Figure 3: Qualitative results on the VOC 2012 dataset. The top four rows show random images that contain three or more objects. The
bottom row shows images that have a ground-truth object that is not predicted well by our algorithm. For each image, the figure reports the
ABO and the 50%-recall of our algorithm. See text for details.
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Figure 4: Recall for bounding box proposals. (a,b) Average best
overlap and average recall for a varying proposal budget. (c,d)
Recall at different accuracy thresholds with 1000 proposals and
2000 proposals.

tion methodology of Krähenbühl and Koltun [21]. The re-
sults are shown in Figure 4. Objectness [1] and BING [8]
perform well at 50%-recall but their performance degrades
rapidly for higher recall thresholds. Edge boxes [35] per-
forms best at 70%-recall but their performance also drops at
more stringent accuracy levels. Our approach outperforms
all alternatives at high accuracy levels (J > 0.8).

We further compute the volume under surface
(VUS) [21], average best overlap (ABO), and average
recall (AR) [18] for 2000 bounding box proposals. Note
that AR is known to be a particularly good predictor of
detection performance [18]. The results are provided in
Table 4. The presented approach outperforms all prior
work in all accuracy measures.

Method VUS ABO AR Time

BING [8] 0.278 0.640 0.296 0.003s
Objectness [1] 0.324 0.643 0.335 2.2s
Edge boxes [35] 0.527 0.800 0.577 0.3s
Sel. search [32] 0.528 0.781 0.580 2.2s
GOP [21] 0.546 0.797 0.615 0.9s
Our approach 0.558 0.819 0.644 1.1s

Table 4: Bounding box proposal accuracy for 2000 proposals.

6.3. Microsoft COCO

We have evaluated our algorithm on the recent Microsoft
COCO dataset [23]. The ground truth segmentation annota-
tions in this dataset are quite rough. To deal with imprecise

annotations, we disregard a 3-pixel band around the anno-
tated boundaries in the evaluation. Table 5 reports the accu-
racy of our approach and of state-of-the-art proposal algo-
rithms that could feasibly be run on this large dataset. Our
approach achieves the highest 70%-recall. In ABO our ap-
proach outperforms prior work by 2 to 4 percentage points,
in 50%-recall by 4 to 6 percentage points.
Dataset generalization. We have also trained models on
the entire VOC 2012 segmentation dataset and then evalu-
ated them on COCO. The results are reported in Table 5.
Models trained on COCO and models trained on VOC per-
form similarly. This strongly suggests that our approach
is capable of learning a general model of bottom-up object
segmentation, biased neither to a specific dataset nor to spe-
cific object classes.

Method # prop. ABO 50%-rec. 70%-rec.

GOP [21] 5501 0.649 0.749 0.527
Sel. search [32] 6504 0.654 0.770 0.471
MCG [3] 5377 0.669 0.759 0.563

Ours, λ = 0.3 1920 0.626 0.717 0.437
Ours, λ = 0.2 4078 0.674 0.791 0.526
Ours, λ = 0.1 5175 0.689 0.809 0.565

Ours (VOC) 2027 0.628 0.707 0.462
Ours (VOC) 4331 0.676 0.781 0.558
Ours (VOC) 5480 0.690 0.802 0.573

Table 5: Generalization across datasets. We trained three en-
sembles on the Microsoft COCO dataset and three on the Pascal
VOC2012 dataset, then tested all six on COCO. Ensembles trained
on VOC generalize well to COCO.

7. Conclusion
We presented a new approach to bottom-up object seg-

mentation. Our approach trains an ensemble of figure-
ground segmentation models. When applied to an image,
each model independently identifies candidate objects. The
ensemble is trained jointly, enabling different models to
specialize. We show that ensemble training can be reduced
to a sequence of combinatorial optimization problems. The
training procedure is general and accommodates different
model types. The size and composition of the ensemble
are optimized along with the parameters of the incorpo-
rated models, all for the same objective. Experimental re-
sults demonstrate that the presented approach significantly
outperforms prior object proposal algorithms in terms of
detailed shape overlap as well as bounding box overlap.
The results also indicate that the trained ensembles gen-
eralize across datasets, suggesting that the presented ap-
proach is capable of producing generally applicable models
of bottom-up object segmentation.
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[2] P. Arbeláez, B. Hariharan, C. Gu, S. Gupta, L. D. Bourdev,

and J. Malik. Semantic segmentation using regions and parts.
In CVPR, 2012. 2
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