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Figure 1: Flow chart of the proposed method. We first map the image pairs to the explicit poly-
nomial kernel feature, then train a mixture of similarity functions to discover multiple matching
patterns.

1 Introduction

Existing works tackle this problem from two paths. The first one is to design
a visual descriptor to handle inter-camera differences in lighting conditions,
changes in object orientation and object pose. The second path is to learn
a similarity function to suppress inter-camera variations, which our work
belongs to.

In this paper, we present an explicit polynomial kernel feature map,
which is capable of characterizing the similarity information of all pairs of
patches between two images, called soft-patch-matching, instead of greed-
ily keeping only the best matched patch, and thus more robust. Second,
we introduce a mixture of linear similarity functions that is able to dis-
cover different soft-patch-matching patterns. Last, we introduce a negative
semi-definite regularization over a subset of the weights in the similarity
function, which is motivated by the connection between explicit polynomial
kernel feature map and the Mahalanobis distance, as well as the sparisity
constraints over the parameters to avoid over-fitting.

2 Methodology

Similarity Function. We introduce the similarity function f (x1,x2) for
image descriptors x1 and x2. The similarity function is performed by an ex-
plicit kernel feature map φ(z) on the concatenated vector z = [x>1 x>2 ]. For
second-order polynomial kernel k(z1,z2) = (z>1 z2)

2, the corresponding fea-
ture map φ(z)= φ(z>z)= [vec(x1x>1 )

> vec(x2x>1 )
> vec(x1x>2 )

> vec(x2x>2 )
>].

To make the function be symmetric, which is natural for the similarity func-
tion, we redefine:

φ(x1,x2) = [vec(x1x>1 +x2x>2 )
> vec(x2x>1 +x1x>2 )

>]>. (1)

This feature map takes into account the relation between the feature values
from the same position and different positions. In the case when feature x
is a patch-wise descriptor of an image (each entry or subvector corresponds
to a block of the image), vec(x1x>2 ) can be viewed as a concatenation of
cross-patch similarities of two images, where the cross-patch similarity is a
vector formed by vectorizing the out-product of the patch features. In other
words, it matches each patch in one image with all the patches in the other
image and all the matching scores are attained as the descriptor, which we
call soft-patch-matching, instead of only keeping the best-matched score.
This still holds even the descriptor x undergo certain linear transformation.
As we can show that it is equivalent to transforming the matching vec(x1x>2 )
into a linear subspace. The similarity function, f (x1,x2), is usually linear
w.r.t. φ(x1,x2). To handle different soft-patch-matching patterns, we make
non-linear extension using a latent formulation,

f (x1,x2) = max
h=1,...H

fh(x1,x2), (2)
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where fh(x1,x2;wh) = w>h φ(x1,x2). Intuitively, the latent formulation aim-
s to discover H representative patterns {wh}H

h=1 and uses the most similar
pattern to evaluate the similarity for a pair (x1,x2) in terms of the inner
product.
Regularization. The first regularization is motivated by the connection
between explicit polynomial kernel feature map and the Mahalanobis dis-
tance. We rearrange φ(x1,x2)= [φ 1(x1,x2), φ 2(x1,x2)], where φ 1(x1,x2)=
vec(x1x>1 +x2x>2 −x1x>2 −x2x>1 ) and φ 2(x1,x2) = vec(x1x>2 +x2x>1 ). Ac-
cordingly, wh is written as [w1

h, w2
h], and the linear function:

fh(x1,x2) = (w1
h)
>

φ
1(x1,x2)+(w2

h)
>

φ
2(x1,x2). (3)

We impose the negative semi-definite regularization over w1
h, mat(w1

h)� 0.
As it can be considered that we use the negative Mahalanobis distance to
measure the similarity. The second regularization is motivated by the as-
sumption that different matching patterns share a common component. We
decompose wh = uh +u0, and align the weights of the H similarity func-
tions to a common weight vector u0. The alignment is imposed by a sparsity
regularization: ∑

H
h=1 ‖uh‖1. In addition, we also impose the sparsity regu-

larization ‖u0‖1, which is widely used for feature selection.
Problem formulation. The training data for person re-identification can
be transformed as follows. Given a set of probe images X = {x1, · · · ,xN},
image xn is associated with two sets of gallery images: a positive set X+

n
composed of the images about the same person with xn, a negative set X−n
composed of the images about different persons. We utilize the triplet loss:
L(u0,u1, ...,uH) = ∑

N
i=1 ∑x j∈X+

i ,xk∈X−i [ f (xi,xk)− f (xi,x j) + 1]+, where
x j ∈ X+

i and xk ∈ X−i . With the regularization, the objective function for
person re-identification is given as:

min
u0 ,...,uH

L(u0,u1, ...,uH)+λ

H

∑
h=0
‖uh‖1, s.t.M(uh)� 0,h = 0,1, . . . ,H. (4)

where M(uh) = mat(u1
h). u1

h is the first half part of uh. As wh = [w1
h,w

2
h] =

[u1
h +u1

0,u
2
h +u2

0], constraints in 4 can derive mat(w1
h)� 0.

Optimization. As problem 4 is non-convex, we utilize a EM-like algo-
rithm to iteratively optimize a convex subproblem that is a upper bound of
the original problem. Each iteration includes two steps. The first step is
to estimate the hidden variables for each positive image pairs, which yeilds
the subproblem. The second step is optimize the subproblem by alternating
direction method of multipliers (ADMM).

3 Experiment

We evaluate the proposed similarity learning approach for the person re-
identification task on three widely-used datasets including VIPER, GRID
and CAVIAR4REID, as well as for the face verification task on the LFW
dataset. We empirically analyzed how various components in our approach
affect the performance, including the influence of explicit polynomial kernel
feature map, regularization as well as a mixture of similarity functions.

Methods Regularization Feature H Loss function r=1 r=10 r=20
NSS None φ(x1,x2) 6 triplet 24.8 72.9 87.0
SP Sparse(SP) φ(x1,x2) 6 triplet 26.1 76.7 89.5
SD Semi-definite(SD) φ(x1,x2) 6 triplet 34.4 69.5 82.7
F1 SP+SD φ 1(x1,x2) 6 triplet 28.8 74.8 86.9
F2 SP+SD φ 2(x1,x2) 6 triplet 28.9 77.7 89.2
F3 SP+SD φ 3(x1,x2) 6 triplet 13.4 36.6 49.9

Single SP+SD φ(x1,x2) 0 triplet 33.9 81.2 91.7
Binary SP+SD φ(x1,x2) 6 binary 33.0 80.6 89.5
Ours SP+SD φ(x1,x2) 6 triplet 36.8 83.7 91.7

Table 1: The empirical evaluation on the VIPER dataset: The top-n matching rate of the
methods with different configurations about regularization strategy, explicit polynomial kernel
feature map, the number of similarity funcion H and the loss function. All the experiments are
run 10 times with the same partition. The size of the gallery set is 316.
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