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The problem of estimating an accurate depth map from a lenslet light field
camera, e.g. LytroTM[1] and RaytrixTM[2], is investigated. Because the
baseline between sub-aperture images from a lenslet light field camera is
very narrow, directly applying the existing stereo matching algorithms such
as [3] cannot produce satisfying results. In this paper, an algorithm for stereo
matching between sub-aperture images with an extremely narrow baseline is
presented. Central to the proposed algorithm is the use of the phase shift the-
orem in the Fourier domain to estimate the sub-pixel shifts of sub-aperture
images. This enables the estimation of the stereo correspondences at sub-
pixel accuracy, even with a very narrow baseline. In addition, a method of
correcting distortions of lenslet light field cameras is also presented.

Distortion Estimation and Correction During the capture of a light field
image of a planar object, spatially variant epipolar plane image (EPI) slopes
(i.e. non-uniform depths) are observed that result from the distortions. In
addition, the degree of distortion also varies for each sub-aperture image.
To solve this problem, an energy minimization problem is formulated under
a constant depth assumption as follows:

Ĝ = argmin
G

∑
x
|θ(I(x))−θo−G(x)| (1)

where | · | denotes the absolute operator. θo, θ(·), and G(·) denote the slope
without distortion, the slope of EPI, and the amount of distortion at point x,
respectively. An image of a planar checkerboard is captured and compared
with the observed EPI slopes with θo. Points with strong gradients in the EPI
are selected and the difference (θ(·)−θo) is calculated in Eq. (1). Then, the
entire field curvature G is fitted to a second order polynomial surface model.

Depth Map Estimation Given the distortion-corrected sub-aperture im-
ages, the goal is to estimate accurate dense depth maps. The proposed depth
map estimation algorithm is developed using a cost-volume-based stereo [3].
In order to manage the narrow baseline between the sub-aperture images, the
pipeline is tailored with three significant differences described in the next.

1) Phase Shift based Sub-pixel Displacement A key contribution of the
proposed depth estimation algorithm is matching the narrow baseline sub-
aperture images using sub-pixel displacements. According to the phase shift
theorem, if an image I is shifted by ∆x ∈ R2, the corresponding phase shift
in the 2D Fourier transform is:

F{I(x+∆x)}= F{I(x)}exp2πi∆x, (2)

where F{·} denotes the discrete 2D Fourier transform. In Eq. (2), multiply-
ing the exponential term in the frequency domain is the same as convolving
a Dirichlet kernel (or periodic sinc) in the spatial domain. According to the
Nyquist-Shannon sampling theorem [4], a continuous band-limited signal
can be perfectly reconstructed through convolving it with a sinc function. If
the centroid of the sinc function is deviated from the origin, precisely shifted
signals can be obtained. In the same manner, Eq. (2) generates a precisely
shifted image in the spatial domain if the sub-aperture image is band-limited.
Therefore, the sub-pixel shifted image I′(x) is obtained using:

I′(x) = I(x+∆x) = F−1{F{I(x)}exp2πi∆x}. (3)

2) Building the Cost Volume In order to match sub-aperture images, two
complementary costs were used: the sum of absolute differences (SAD) and
the sum of gradient differences (GRAD). The cost volume C is defined as a
function of x and cost label l:

C(x, l) = αCA(x, l)+(1−α)CG(x, l), (4)
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Figure 1: Synthesized views of the two depth maps acquired from Lytro
software [1] and our approach.

where α ∈ [0,1] adjusts the relative importance between the SAD cost CA
and GRAD cost CG which are defined as

CA(x, l)=∑
s∈V

∑
x∈Rx

min(|I(sc,x)−I(s,x+∆x(s, l))|,τ1), (5)

CG(x, l)=∑
s∈V

∑
x∈Rx

β (s)min
(
Diffx(sc,s,x, l),τ2

)
+
(
1−β (s)

)
min

(
Diffy(sc,s,x, l),τ2

)
where Rx is a small rectangular region centered at x; τ1 and τ2 are truncation
values of robust functions, V contains the st coordinate pixels s, except for
the center view sc and Diffx(sc,s,x, l) = |Ix(sc,x)− Ix(s,x+∆x(s, l))| de-
notes the differences between the x-directional gradient of the sub-aperture
images. β (s) controls the relative importance of the two directional gradi-
ent differences based on the relative st coordinates and is defined as β (s) =
|s−sc|

|s−sc|+|t−tc| . Equation (2) is used for precise sub-pixel shifting of the im-
ages. Equation (5) builds a matching cost through comparing the center
sub-aperture image I(sc,x) with the other sub-aperture images I(s,x) to gen-
erate a disparity map from a canonical viewpoint. The 2D shift vector ∆x
in Eq. (5) is defined as ∆x(s, l) = lk(s− sc) where k is the unit of the label
in pixels. ∆x linearly increases as the angular deviations from the center
viewpoint increase.

3) Disparity Optimization and Enhancement In order to reduce the effects
of image noise, the weighted median filter was adopted to remove the noise
in the cost volume, followed by using the multi-label optimization to prop-
agate reliable disparity labels to the weak texture regions. In the multi-label
optimization, confident matching correspondences between the center view
and other views are used as additional constraints, which assist in prevent-
ing oversmoothing at the edges and texture regions. Finally, the estimated
depth map is iteratively refined using quadratic polynomial interpolation to
enhance the estimated depth map with sub-label precision.
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