


tation. Prominent examples from this line of work are re-

stricted Boltzmann machines (RBMs) [12] and Deep Boltz-

mann Machines (DBMs) [25], as well as the plethora of

models derived from them [11, 21, 19, 28, 22]. RBMs and

DBMs are undirected graphical models which aim to build a

probabilistic model of the data and treat encoding and gen-

eration as an (intractable) joint inference problem.

A different approach is to train directed graphical mod-

els of the data distribution. This includes a wide variety

of methods ranging from Gaussian mixture models [8, 30]

to autoregressive models [18] and stochastic variations of

neural networks [2, 10, 24, 16, 29]. Among them Rezende

et al. [24] developed an approach for training a generative

model with variational inference by performing (stochastic)

backpropagation through a latent Gaussian representation.

Goodfellow et al. [10] model natural images using a ”de-

convolutional” generative network that is similar to our ar-

chitecture.

Most unsupervised generative models can be extended

to incorporate label information, forming semi-supervised

and conditional generative models which lie between fully

unsupervised approaches and our work. Examples include:

gated conditional RBMs [21] for modeling image transfor-

mations, training RBMs to disentangle face identity and

pose information using conditional RBMs [23], and learn-

ing a generative model of digits conditioned on digit class

using variational autoencoders [15]. In contrast to our work,

these approaches are typically restricted to small models

and images, and they often require an expensive inference

procedure – both during training and for generating images.

The general difference of our approach to prior work

on learning generative models is that we assume a high-

level latent representation of the images is given and use

supervised training. This allows us 1) to generate relatively

large high-quality images of 128 × 128 pixels (as com-

pared to maximum of 48× 48 pixels in the aforementioned

works) and 2) to completely control which images to gener-

ate rather than relying on random sampling. The downside

is, of course, the need for a label that fully describes the

appearance of each image.

Modeling of viewpoint variation is often considered in

the context of pose-invariant face recognition [3, 33]. In

a recent work Zhu et al. [34] approached this task with a

neural network: their network takes a face image as input

and generates a random view of this face together with the

corresponding viewpoint. The network is fully connected

and hence restricted to small images and, similarly to gen-

erative models, requires random sampling to generate a de-

sired view. This makes it inapplicable to modeling large and

diverse images, such as the chair images we model.

Our work is also loosely related to applications of CNNs

to non-discriminative tasks, such as super-resolution [6] or

inferring depth from a single image [7].

3. Model description

Our goal is to train a neural network to generate accurate

images of chairs from a high-level description: class, orien-

tation with respect to the camera, and additional parameters

such as color, brightness, etc.

Formally, we assume that we are given a dataset of ex-

amples D = {(c1,v1, θ1), . . . , (cN ,vN , θN )} with targets

O = {(x1, s1), . . . , (xN , sN )}. The input tuples consist of

three vectors: c is the class label in one-hot encoding, v –

azimuth and elevation of the camera position (represented

by their sine and cosine 1) and θ – the parameters of addi-

tional artificial transformations applied to the images. The

targets are the RGB output image x and the segmentation

mask s.

We include artificial transformations Tθ described by

the randomly generated parameter vector θ to increase the

amount of variation in the training data and reduce over-

fitting, analogous to data augmentation in discriminative

CNN training [17]. Each Tθ is a combination of the follow-

ing transformations: in-plane rotation, translation, zoom,

stretching horizontally or vertically, changing hue, chang-

ing saturation, changing brightness.

3.1. Network architecture

We experimented with networks for generating images

of size 64×64 and 128×128. The network architectures for

both variations are identical except that the smaller network

is reduced by one convolutional layer. The structure of the

larger 128× 128 generative network is shown in Figure 2.

Conceptually the generative network, which we formally

refer to as g(c,v, θ), looks like a usual CNN turned upside

down. It can be thought of as the composition of two pro-

cessing steps g = u ◦ h.

Layers FC-1 to FC-4 first build a shared, high dimen-

sional hidden representation h(c,v, θ) from the input pa-

rameters. Within these layers the three input vectors are

first independently fed through two fully connected layers

with 512 neurons each, and then the outputs of these three

streams are concatenated. This independent processing is

followed by two fully connected layers with 1024 neurons

each, yielding the response of the fourth fully connected

layer (FC-4).

After these fully connected layers the network splits

into two streams (layers FC-5 and uconv-1 to uconv-4),

which independently generate the image and object mask

from the shared hidden representation. We denote these

streams uRGB(·) and usegm(·). Each of them consists of

a fully connected layer, the output of which is reshaped

to a 8 × 8 multichannel image and fed through 4 ’unpool-

1We do this to deal with periodicity of the angle. If we simply used the

number of degrees, the network would have no way to understand that 0

and 359 degrees are in fact very close.





More specifically, we used the dataset of rendered views

they provide. It contains 1393 chair models, each rendered

from 62 viewpoints: 31 azimuth angles (with step of 11 de-

grees) and 2 elevation angles (20 and 30 degrees), with a

fixed distance to the chair. We found that the dataset in-

cludes many near-duplicate models, models differing only

by color, or low-quality models. After removing these we

ended up with a reduced dataset of 809 models, which we

used in our experiments. We cropped the renders to have

a small border around the chair and resized to a common

size of 128 × 128 pixels, padding with white where neces-

sary to keep the aspect ratio. Example images are shown in

Figure 4. For training the network we also used segmenta-

tion masks of all training examples, which we produced by

subtracting the monotonous white background.

3.4. Training details

For training the networks we built on top of the caffe

CNN implementation [13]. We used stochastic gradient de-

scent with a fixed momentum of 0.9. We first trained with

a learning rate of 0.0002 for 500 passes through the whole

dataset (epochs), and then performed 300 additional epochs

of training, dividing the learning rate by 2 after every 100
epochs. We initialized the weights of the network with or-

thogonal matrices, as recommended by Saxe et al. [26].

When training the 128 × 128 network from scratch, we

observed that its initial energy value never starts decreasing.

Since we expect the high-level representation of the 64×64
and 128 × 128 networks to be very similar, we mitigated

this problem by initializing the weights of the 128 × 128
network with the weights of the trained 64 × 64 network,

except for the two last layers.

We used the 128×128 network in all experiments except

for the viewpoint interpolation experiments in section 5.1.

In those we used the 64×64 network to reduce computation

time.

4. Analysis of the network

Neural networks are known to largely remain ’black

boxes’ whose function is hard to understand. In this sec-

tion we provide an analysis of our trained generative net-

work with the aim to obtain some intuition about its internal

working. We only present the most interesting results here;

more can be found in the supplementary material.

4.1. Network capacity

The first observation is that the network successfully

models the variation in the data. Figure 5 shows results

where the network was forced to generate chairs that are sig-

nificantly transformed relative to the original images. Each

row shows a different type of transformation. Images in the

central column are non-transformed. Even in the presence

of large transformations, the quality of the generated images

Figure 5. Generation of chair images while activating various

transformations. Each row shows one transformation: translation,

rotation, zoom, stretch, saturation, brightness, color. The middle

column shows the reconstruction without any transformation.

is basically as good as without transformation. The image

quality typically degrades a little in case of unusual chair

shapes (such as rotating office chairs) and chairs including

fine details such as armrests (see e.g. one of the armrests in

row 7 in Figure 5) or thin elements in the back of the chair

(row 3 in Figure 5).

An interesting observation is that the network easily

deals with extreme color-related transformations, but has

some problems representing large spatial changes, espe-

cially translations. Our explanation is that the architecture

we use does not have means to efficiently model, say, trans-

lations: since transformation parameters only affect fully

connected layers, the network needs to learn a separate

’template’ for each position. A more complex architecture,

which would allow transformation parameters to explicitly

affect the feature maps of convolutional layers (by translat-

ing, rotating, zooming them) might further improve genera-

tion quality.

We did not extensively experiment with different net-

work configurations. However, small variations in the net-

work’s depth and width did not seem to have significant ef-

fect on the performance. It is still likely that parameters

such as the number of layers and their sizes can be further

optimized.

The 128 × 128 network has approximately 32 million

parameters, the majority of which are in the first fully con-

nected layers of RGB and segmentation streams (FC-5): ap-



Figure 6. Output layer filters of the 128×128 network. Top: RGB

stream. Bottom: Segmentation stream.

proximately 16 and 8 million, respectively. This is by far

fewer than the approximately 400 million foreground pixels

in the training data even when augmentation is not applied.

When augmentation is applied, the training data size be-

comes virtually infinite. These calculations show that learn-

ing all samples by heart is not an option.

4.2. Activating single units

One way to analyze a neural network (artificial or real)

is to visualize the effect of single neuron activations. Al-

though this method does not allow us to judge about the

network’s actual functioning, which involves a clever com-

bination of many neurons, it still gives a rough idea of what

kind of representation is created by the different network

layers.

Activating single neurons of uconv-3 feature maps (last

feature maps before the output) is equivalent to simply look-

ing at the filters of these layers which are shown in Figure 6.

The final output of the network at each position is a linear

combination of these filters. As to be expected, they include

edges and blobs.

Our model is tailored to generate images from high-level

neuron activations, which allows us to activate a single neu-

ron in some of the higher layers and forward-propagate

down to the image. The results of this procedure for dif-

ferent layers of the network are shown in Figures 7 and 9.

Each row corresponds to a different network layer. The left-

most image in each row is generated by setting all neurons

of the layer to zero, and the other images – by activating

one randomly selected neuron.

In Figure 7 the first two rows show images produced

when activating neurons of FC-1 and FC-2 feature maps

of the class stream while keeping viewpoint and transfor-

mation inputs fixed. The results clearly look chair-like but

do not show much variation (the most visible difference is

chair vs armchair), which suggests that larger variations are

achievable by activating multiple neurons. The last two

rows show results of activating neurons of FC-3 and FC-

4 feature maps. These feature maps contain joint class-

viewpoint-transformation representations, hence the view-

point is not fixed anymore. The generated images still re-

semble chairs but get much less realistic. This is to be ex-

pected: the further away from the inputs, the less semantic

meaning there is in the activations. One interesting finding

is that there is a ’zoom neuron’ in layer FC-4 (middle image

in the last row of Figure 7). When its value is increased, the

Figure 7. Images generated from single unit activations in feature

maps of different fully connected layers of the 128×128 network.

From top to bottom: FC-1 and FC-2 of the class stream, FC-3,

FC-4.

Figure 8. The effect of increasing the activation of the ’zoom neu-

ron’ we found in the layer FC-4 feature map.

Figure 9. Images generated from single neuron activations in fea-

ture maps of some layers of the 128 × 128 network. From top

to bottom: uconv-2, uconv-1, FC-5 of the RGB stream. Relative

scale of the images is correct. Bottom images are 57 × 57 pixel,

approximately half of the chair size.

output chair image gets zoomed. This holds not only for the

case in which all other activations are zero, but also if the

hidden representation contains the information for generat-

ing an actual chair, see Figure 8 for an example.

Images generated from single neurons of the convolu-

tional layers are shown in Figure 9. A somewhat disappoint-

ing observation is that while single neurons in later layers

(uconv-2 and uconv-3) produce edge-like images, the neu-

rons of higher deconvolutional layers generate only blurry

’clouds’, as opposed to the results of Zeiler and Fergus [31]

with a classification network and max-unpooling. Our ex-

planation is that because we use naive regular-grid unpool-



ing, the network cannot slightly shift small parts to precisely

arrange them into larger meaningful structures. Hence it

must find another way to generate fine details. In the next

subsection we show that this is achieved by a combination

of spatially neighboring neurons.

4.3. Analysis of the hidden layers

Rather than just activating single neurons while keeping

all others fixed to zero, we can use the network to normally

generate an image and then analyze the hidden layer acti-

vations by either looking at them or modifying them and

observing the results. An example of this approach was al-

ready used above in Figure 8 to understand the effect of the

’zoom neuron’. We present two more results in this direc-

tion here, and several more can be found in the supplemen-

tary material.

In order to find out how the blurry ’clouds’ generated by

single high-level deconvolutional neurons (Figure 9) form

perfectly sharp chair images, we smoothly interpolate be-

tween a single activation and the whole chair. Namely, we

start with the FC-5 feature maps of a chair, which have a

spatial extent of 8 × 8. Next we only keep active neurons

in a region around the center of the feature map (setting all

other activations to zero), gradually increasing the size of

this region from 2 × 2 to 8 × 8. Hence, we can see the

effect of going from almost single-neuron activation level

to the whole image level. The outcome is shown in Fig-

ure 10. Clearly, the interaction of neighboring neurons is

very important: in the central region, where many neurons

are active, the image is sharp, while in the periphery it is

blurry. One interesting effect that is visible in the images is

how sharply the legs of the chair end in the second to last

image but appear in the larger image. This suggests highly

non-linear suppression effects between activations of neigh-

boring neurons.

Lastly some interesting observations can be made by tak-

ing a closer look at the feature maps of the uconv-3 layer

(the last pre-output layer). Some of them exhibit regular

patterns shown in Figure 11. These feature maps corre-

spond to filters which look near-empty in Figure 6 (such as

the 3rd and 10th filters in the first row). Our explanation

of these patterns is that they compensate high-frequency

artifacts originating from fixed filter sizes and regular-grid

unpooling. This is supported by the last row of Figure 11

which shows what happens to the generated image when

these feature maps are set to zero.

5. Experiments

5.1. Interpolation between viewpoints

In this section we show that the generative network is

able to generate previously unseen views by interpolating

between views present in the training data. This demon-

Figure 10. Chairs generated from spatially masked FC-5 feature

maps (the feature map size is 8 × 8). The size of the non-zero

region increases left to right: 2× 2, 4× 4, 6× 6, 8× 8.

Figure 11. Top: Selected feature maps from the pre-output layer

(uconv-3) of the RGB stream. These feature maps correspond to

the filters which look near-empty in Figure 6. Middle: Close-ups

of the feature maps. Bottom: Generation of a chair with these

feature maps set to zero (left image pair) or left unchanged (right).

Note the high-frequency artifacts in the left pair of images.

strates that the network internally learns a representation

of chairs which enables it to judge about chair similarity

and use the known examples to generate previously unseen

views.

In this experiment we use the 64 × 64 network to re-

duce computational costs. We randomly separate the chair

styles into two subsets: the ’source set’ with 90 % styles

and the ’target set’ with the remaining 10 % chairs. We

then vary the number of viewpoints per style either in both

these datasets together (’no transfer’) or just in the target

set (’with transfer’) and then train the generative network

as before. In the second setup the idea is that the network

may use the knowledge about chairs learned from the source

set (which includes all viewpoints) to generate the missing

viewpoints of the chairs from the target set.

Figure 12 shows some representative examples of angle

interpolation. For 15 views in the target set (first pair of

rows) the effect of the knowledge transfer is already visi-

ble: interpolation is smoother and fine details are preserved

better, for example a leg in the middle column. Starting

from 8 views (second pair of rows and below) the network

without knowledge transfer fails to produce satisfactory in-
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Figure 12. Examples of interpolation between angles. In each pair

of rows the top row is with knowledge transfer and the second -

without. In each row the leftmost and the rightmost images are

the views presented to the network during training, while all inter-

mediate ones are not and hence are results of interpolation. The

number of different views per chair available during training is 15,

8, 4, 2, 1 (top-down). Image quality is worse than in other figures

because we use the 64× 64 network here.

terpolation, while the one with knowledge transfer works

reasonably well even with just one view presented during

training (bottom pair of rows). However, in this case some

fine details, such as the armrest shape, are lost.

In Figure 13 we plot the average Euclidean error of the

generated missing viewpoints from the target set, both with

and without transfer (blue and green curves). Clearly, pres-

ence of all viewpoints in the source dataset dramatically

improves the performance on the target set, especially for

small numbers of available viewpoints.

One might suppose (for example looking at the bottom

pair of rows of Figure 12) that the network simply learns all

the views of the chairs from the source set and then, given a

limited number of views of a new chair, finds the most simi-

lar one, in some sense, among the known models and simply

returns the images of that chair. To check if this is the case,
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Figure 13. Reconstruction error for unseen views of chairs from

the target set depending on the number of viewpoints present dur-

ing training. Blue: all viewpoints available in the source dataset

(knowledge transfer), green: the same number of viewpoints are

available in the source and target datasets (no knowledge transfer).

we evaluate the performance of such a naive nearest neigh-

bor approach. For each image in the target set we find the

closest match in the source set for each of the given views

and interpolate the missing views by linear combinations of

the corresponding views of the nearest neighbors. For find-

ing nearest neighbors we try two similarity measures: Eu-

clidean distance between RGB images and between HOG

descriptors. The results are shown in Figure 13. Interest-

ingly, although HOG yields semantically much more mean-

ingful nearest neighbors (not shown in figures), RGB simi-

larity performs much better numerically. The performance

of this nearest neighbor method is always worse than that of

the network, suggesting that the network learns more than

just linearly combining the known chairs, especially when

many viewpoints are available in the target set.

5.2. Interpolation between classes

Remarkably, the generative network can interpolate not

only between different viewpoints of the same object, but

also between different objects, so that all intermediate im-

ages are also meaningful. To obtain such interpolations, we

simply linearly change the input label vector from one class

to another. Some representative examples of such morph-

ings are shown in Figure 14. The images are sorted by

subjective morphing quality (decreasing from top to bot-

tom). The network produces very naturally looking mor-

phings even in challenging cases, such as the first 5 rows.

In the last three rows the morphings are qualitatively worse:

some of the intermediate samples do not look much like real

chairs. However, the result of the last row is quite intriguing

as different types of intermediate leg styles are generated.

More examples of morphings are shown in the supplemen-

tary material.
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Figure 14. Examples of morphing different chairs, one morphing

per row. Leftmost and rightmost chairs in each row are present

in the training set, all intermediate ones are generated by the net-

work. Rows are ordered by decreasing subjective quality of the

morphing, from top to bottom.

5.2.1 Correspondences

The ability of the generative CNN to interpolate between

different chairs allows us to find dense correspondences be-

tween different object instances, even if their appearance is

very dissimilar.

Given two chairs from the training dataset, we use the

128× 128 network to generate a morphing consisting of 64
images (with fixed view). We then compute the optical flow

in the resulting image sequence using the code of Brox et

al. [4]. To compensate for the drift, we refine the computed

optical flow by recomputing it with a step of 9 frames, ini-

tialized by concatenated per-frame flows. Concatenation of

these refined optical flows gives the global vector field that

connects corresponding points in the two chair images.

In order to numerically evaluate the quality of the cor-

respondences, we created a small test set of 30 image pairs

(examples are shown in the supplementary material). We

manually annotated several keypoints in the first image of

each pair (in total 295 keypoints in all images) and asked 9
people to manually mark corresponding points in the second

image of each pair. We then used mean keypoint positions

in the second images as ground truth. At test time we mea-

sured the performance of different methods by computing

average displacement of predicted keypoints in the second

Method All Simple Difficult

DSP [14] 5.2 3.3 6.3
SIFT flow [20] 4.0 2.8 4.8
Ours 3.9 3.9 3.9

Human 1.1 1.1 1.1

Table 1. Average displacement (in pixels) of corresponding key-

points found by different methods on the whole test set and on the

’simple’ and ’difficult’ subsets.

images given keypoints in the first images. We also manu-

ally annotated an additional validation set of 20 image pairs

to tune the parameters of all methods (however, we were

not able to search the parameters exhaustively because some

methods have many).

In Table 1 we show the performance of our algorithm

compared to human performance and two baselines: SIFT

flow [20] and Deformable Spatial Pyramid [14] (DSP). To

analyze the performance in more detail, we additionally

manually separated the pairs into 10 ’simple’ ones (two

chairs are quite similar in appearance) and 20 ’difficult’

ones (two chairs differ a lot in appearance). On average

the very basic approach we used outperforms both base-

lines thanks to the intermediate samples produced by the

generative neural network. More interestingly, while SIFT

flow and DSP have problems with the difficult pairs, our al-

gorithm does not. This suggests that errors of our method

are largely due to contrast changes and drift in the optical

flow, which does not depend on the difficulty of the image

pair. The approaches are hence complementary: while for

similar objects direct matching is fairly accurate, for more

dissimilar ones intermediate morphings are very helpful.

6. Conclusions

We have shown that supervised training of convolutional

neural network can be used not only for standard discrim-

inative tasks, but also for generating images given high-

level class, viewpoint and lighting information. A network

trained for such a generative task does not merely learn

to generate the training samples, but also generalizes well,

which allows it to smoothly morph different object views

or object instances into each other with all intermediate im-

ages also being meaningful. It is fascinating that the rel-

atively simple architecture we proposed is already able to

learn such complex behavior.

From the technical point of view, it is impressive that the

network is able to process very different inputs – class label,

viewpoint and the parameters of additional chromatic and

spatial transformations – using exactly the same standard

layers of ReLU neurons. It demonstrates again the wide

applicability of convolutional networks.
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