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With the rapid growth of online content such as images, videos, web pages,
it is crucial to design a scalable and effective classification system to au-
tomatically organize, store, and search the content. In conventional clas-
sification, each instance is assumed to belong to exactly one class among
a finite number of candidate classes. However, in modern applications, an
instance can have multiple labels. For example, an image can be annotated
by many conceptual tags in semantic scene classification. Multi-label data
have ubiquitously occurred in many application domains: multimedia infor-
mation retrieval, tag recommendation, query categorization, gene function
prediction, medical diagnosis, drug discovery and marketing. An important
and challenging research problem [1, 4] in multi-label learning is how to
exploit and make use of label correlations.

In this paper, we develop a novel method for multi-label learning when
there is only a small number of labeled data. Our main idea is to design
a Semi-supervised Low-Rank Mapping (SLRM) from a feature space to a
label space based on given multi-label data. More specifically, the SLRM
model can be formularized as

min
U
||UX̂−Y||2F +λ ||U||∗+ γtr((UX)L(UX)T ), (1)

where X̂ = [x̂1 x̂2 · · · x̂nl ] indicates a set of labeled data with nl instances
(x̂i ∈ Rd is a d-dimensional feature vector) and Y = [y1 y2 · · · ynl

] is the
corresponding label information ( yi ∈ Rk is a k-dimensional label vector of
the ith instance). X̌ = [x̌1 x̌2 · · · x̌nu ] (x̌i ∈ Rd) refers to a set of unlabeled
data with nu instances. The whole data set is denoted as X = [X̂, X̌] with
n instances (n = nl + nu). The main goal of SLRM is to effectively and
efficiently find a good mapping from X̂ to Y using the whole data set X.

In SLRM model, the least square loss function is used for data fitting
between X̂ and Y for easy optimization. The second term is designed for
exploiting the label correlations via low-rank regularization on the linear
transformation U . The linear transformation U can be characterized by its
singular value decomposition:

r

∑
j=1

p j(U)σ j(U)
(
q j(U)

)T (2)

where r = min{k,d}, p j(U)∈Rk and q j(U)∈Rd are singular vectors of U,
and σ j(U) is the jth singular value of U. With loss of generality, we assume
that σ1(U) ≥ σ2(U) ≥ ·· · ≥ σr(U). Then, the nuclear norm regularization
can be employed to measure the complexity of U: ‖U‖∗ = ∑

r
j=1 σ j(U). In

this case, the linear transformation of each data point x̂i can be given by

Ux̂i =
r′

∑
j=1

σ j(U)[
(
q j(U)

)T x̂i]p j(U). (3)

Obviously, the resulting vector is in the label space, and it is a linear com-
bination of label-component vectors: p1(U),p2(U), · · · ,pr′(U) which cor-
respond to the largest r′ singular values in the singular value decomposition
of U. Therefore, the label correlations can be recognized and represented by
these label-component vectors.

The third term aims to make the mapping U capture the intrinsic geo-
metric structure among data. Here, the heat kernel weight with self-tuning
technique is used to construct a nearest neighbor graph for both labeled and

unlabeled data X= [X̂, X̌]. If two points are connected, ai, j = exp
(
−‖xi−x j‖2

σ

)
,

otherwise ai, j = 0. Then, we can generate an edge matrix A = [ai, j] corre-
sponding to the nearest neighbor graph. L is graph Laplacian of matrix A
defined as L = D−A, and D is a diagonal matrix whose main diagonal
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entries are column sums of A, i.e., di,i = ∑
n
i=1 ai, j. This manifold regular-

ization can model the local invariance assumption that when two instances
are close in the feature space, their new representations based on mapping
should be close.

As a virtuous by-product, SLRM can handle missing labels because it
has ability to fill such missing entries with label correlations and intrinsic
structure among data, which is crucial as we may not have access to all the
true labels of each training instance in most real applications [3].

The performance of SLRM is evaluated on four data sets including
MSRC, SUNattribute database [2] and two Mulan multimedia datasets (Core5K
and Mediamill). Five state-of-the-art multi-label classification methods (CPLST,
FAIE, MLLOC, MC and MIML) are taken in our comparison.

(a) Accuracy on Corel5K (b) Accuracy on Mediamill

Figure 1: Comparison of six methods under varying the labeled data sizes
on Corel5K and Mediamill.

(a) Accuracy on SUN (b) Accuracy on MSRC

Figure 2: Comparison results under varying the ratio of missing entries in
label matrix (Y ) on SUN and MSRC.

Figure 1 gives the label prediction performance under varying the la-
beled data size, where 1%-10% of data in each category are employed as
training set. Obviously, the proposed method SLRM outperforms the other
methods. It is interesting that SLRM performs well even when there are very
few labeled data. Figure 2 demonstrates the performance by varying the ra-
tio of missing labels (including positive and negative). SLRM clearly shows
superior performance over other methods, especially on MSRC. We remark
that handling MSRC is more difficult than handling SUN when partial labels
are missing, because MSRC has less average labels in each instance than
SUN.

[1] K. Dembczynski, W. Waegeman, W. Cheng, and E. Hullermeier. On la-
bel dependence and loss minimization in multi-label classification. Ma-
chine Learning, 88(1):5–45, 2012.

[2] G. Patterson, C. Xu, H. Su, and J. Hays. The sun attribute database: Be-
yond categories for deeper scene understanding. International Journal
of Computer Vision, 108:59–81, 2014.

[3] H. Yu, P. Jain, P. Kar, and I. Dhillon. Large-scale multi-label learning
with missing labels. In Proc. of ICML, pages 17–26, 2014.

[4] M. Zhang and Z. Zhou. A review on multi-label learning algorithms.
IEEE Trans. on Knowledge and Data Engineering, 26(8):1819–1837,
2014.

http://www.cv-foundation.org/openaccess/CVPR2015.py
http://www.cv-foundation.org/openaccess/CVPR2015.py

