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Abstract

Multi-label problems arise in various domains including
automatic multimedia data categorization, and have gen-
erated significant interest in computer vision and machine
learning community. However, existing methods do not ad-
equately address two key challenges: exploiting correla-
tions between labels and making up for the lack of labeled
data or even missing labels. In this paper, we proposed a
semi-supervised low-rank mapping (SLRM) model to han-
dle these two challenges. SLRM model takes advantage of
the nuclear norm regularization on mapping to effectively
capture the label correlations. Meanwhile, it introduces
manifold regularizer on mapping to capture the intrinsic
structure among data, which provides a good way to reduce
the required labeled data with improving the classification
performance. Furthermore, we designed an efficient algo-
rithm to solve SLRM model based on alternating direction
method of multipliers and thus it can efficiently deal with
large-scale datasets. Experiments on four real-world mul-
timedia datasets demonstrate that the proposed method can
exploit the label correlations and obtain promising and bet-
ter label prediction results than state-of-the-art methods.

1. Introduction
With the rapid growth of online content such as im-

ages, videos, web pages, it is crucial to design a scalable
and effective classification system to automatically orga-
nize, store, and search the content. In conventional classi-
fication, each instance is assumed to belong to exactly one
class among a finite number of candidate classes. How-
ever, in modern applications, an instance can have multiple
labels. For example, an image can be annotated by many
conceptual tags in semantic scene classification. Multi-label
data have ubiquitously occurred in many application do-
mains: multimedia information retrieval, tag recommenda-
tion, query categorization, gene function prediction, medi-
cal diagnosis, drug discovery and marketing. An important
and challenging research problem [10, 33] in multi-label

learning is how to exploit and make use of label correla-
tions.

In literatures, three label-embedding strategies [1] are
usually adopted to identify label correlations. The first is
derived from side information [4] such as text descriptions
and taxonomies. The second is data-independent, i.e., it
explicitly and implicitly exploits multi-label relationships
from only label information. The main idea of explicit
methods is to extract label relationships, and then con-
struct label hierarchies [24], co-occurrence pairs [12], hy-
pergraphs [26], networks [9], label power-sets [28] and etc.
These methods can be quite effective in multi-label learn-
ing, but their computational complexities are usually high
especially when the number of labels is large. In implicit
methods, a low-dimensional latent space is learned to rep-
resent the original data information. Hsu et al. [14] adopted
compressed sensing technique and Tai and Lin [27] took
advantage of the principal components analysis to gener-
ate the low-dimensional latent space. However, these data-
independent methods only take into account the label infor-
mation.

The last is learned embedding which uses both feature
and label information. Hariharan et al. [13] proposed a
max-margin multi-label model to do correlated prediction
among labels. Zhang and Schneider [34] tried to find proper
multi-label output codes with the aid of canonical correla-
tion analysis. Huang and Zhou [15] identified the local label
correlations by separating data objects into different groups.
Chen and Lin [8] extended the method [27] by integrating
feature information. Lin et al. [18] aimed to learn a low-
dimensional latent space to represent the given data. Recall
that multi-label classification aims to learn a mapping from
a feature space to a label space, thus, both feature infor-
mation and label information should be used to exploit the
label correlations. However, these existing methods may
be time-consuming [13, 15] or mostly depends on the pre-
defined latent space size [34, 8, 18].

On the other hand, supervised learning methods train
classifiers based on sufficiently enough multi-labeled in-
stances. However, it is very expensive to obtain multi-
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labeled instances. In practice, we are always faced with a
small number of multi-labeled instances and a large amount
of unlabeled instances. Therefore, it is very important to
develop semi-supervised multi-label learning methods that
can use both multi-labeled data and unlabeled data together
to deal with this important problem. Li and Guo [16] and
Vasisht et al. [29] integrated active learning techniques into
multi-label learning process to improve the prediction per-
formance. Cabral et al. [5] constructed a feature-plus-label
joint matrix by integrating both multi-labeled and unlabeled
data together. The main step of their iterative algorithm is to
compute the singular value decomposition of the joint ma-
trix, which is computational expensive when the number of
objects, the number of features and the number of labels are
large.

The main contribution of this paper is to develop a novel
method for multi-label learning when there is only a small
number of multi-labeled data. Our main idea is to design a
Semi-supervised Low-Rank Mapping (SLRM) from a fea-
ture space to a label space based on given multi-label data.
The low-rank based regularization of the mapping can ef-
fectively exploit the label and feature correlations because
the label/feature component vectors can be explicitly de-
scribed via the left/right singular vectors of the mapping.
In order to make use of multi-labeled and unlabeled data,
we also construct the mapping based on manifold regular-
ization. In the regularization, we enforce that when two
instances are close in the feature space, their new repre-
sentation based on mapping should be close. In this case,
the mapping is able to capture the intrinsic geometric struc-
ture among instances in both feature space and label space.
As a virtuous by-product, SLRM can handle missing labels
because it has ability to fill such missing entries with la-
bel correlations and intrinsic structure among data, which is
crucial as we may not have access to all the true labels of
each training instance in most real applications [30].

An algorithm for finding SLRM mapping is devel-
oped by using the alternating direction method of mul-
tipliers which can handle large datasets very efficiently.
In the paper, we have conducted extensive experiments
on four multi-label multimedia datasets. The reported re-
sults demonstrate the effectiveness of the proposed SLRM
method. In particular, SLRM outputs promising and better
multi-label classification performance than the other testing
methods (CPLST [8], FAIE [18], MLLOC [15], MC [5],
and MIML [29]).We also illustrate that the proposed algo-
rithm is very efficient for large-scale datasets.

The rest of this paper is organized as follows. In Section
2, we present the proposed SLRM model. In Section 3, we
develop the algorithm for finding the mapping. In Section
4, we report the experimental results and compare the per-
formance of different methods. Some concluding remarks
are given in Section 5.

2. Semi-supervised Low-Rank Mapping
2.1. Notations

Throughout the paper, matrices are denoted by uppercase
bolded letters (e.g., A), vectors are denoted by lowercase
bolded letters (e.g., a), and scalars appear as lowercase let-
ters (e.g., a). The ith column of A is denoted as ai. The
set of real numbers is denoted as R. A variety of norms on
real-valued vectors and matrices will be used. For example,
‖A‖F =

√∑
i

∑
j a

2
i,j =

√
tr(ATA) is the Frobenius

norm, where tr(·) denotes the trace of a matrix, and AT is
the transpose of A. The nuclear norm, ‖A‖∗, is defined as
the sum of singular values, i.e., ‖A‖∗ =

∑
i σi(A) where

σi(A) is the ith singular value of matrix A.
Given a set of labeled data with nl instances

{(x̂i, yi)}
nl
i=1, where x̂i ∈ Rd and yi ∈ Rk are respec-

tively the d-dimensional feature vector and k-dimensional
label vector of the ith labeled data, the traditional multi-
label learning aims to find a mapping function from X̂ =
[x̂1 x̂2 · · · x̂nl ] to Y = [y1 y2 · · · ynl ] using labeled data
only. Each entry of the label vector indicates whether the
current instance belongs to the corresponding class. In real
applications, there are amounts of unlabeled data with nu
instances denoted as X̌ = [x̌1 x̌2 · · · x̌nu ], where x̌i ∈ Rd.
The whole dataset is denoted as X = [X̂, X̌] with n in-
stances and n = nl + nu. Our goal is to effectively and ef-
ficiently find a good mapping from X̂ to Y using the whole
dataset X.

2.2. The Proposed Model

The proposed semi-supervised multi-label learning
model can be stated in the following framework:

min
f

nl∑
i=1

L(x̂i,yi, f) + λΦ(f) + γΨ(f) (1)

where L(·) is the loss function measuring the labeling ap-
proximation error between the given multi-labeled data and
the prediction result, Φ(f) is the regularization to control
the complexity of f and Ψ(f) is the regularization to con-
trol the smoothness of f by requiring that two instances are
close in the label space when they are close in the feature
space. Moreover, λ and γ are two parameters to control the
balance among the three terms in the objective function.

2.3. The Data Fitting Term

The choice of loss function L(·) usually depends on ap-
plication domains. Three convex functions are usually used
such as the hinge loss, logistic loss and least square loss
functions. Among them, the least square loss function is
always adopted for classification problems. As shown in
[11], the least square loss function can provide compara-
ble performance to the hinge loss function. Moreover, it



has shown that the least squares loss function is universally
Fisher consistent and shares the same population minimizer
with the squared hinge loss function [36]. Thus, we for-
mulate a tractable optimization problem by using the least
square loss function as follows:

L(x̂i,yi, f) = ‖f(x̂i)− yi‖22 (2)

More precisely, we express the mapping as a linear trans-
formation U ∈ Rk×d from the feature space Rd to the label
space Rk:

L(x̂i,yi, f) = ‖Ux̂i − yi‖22. (3)

2.4. The Regularization of Complexity

The linear transformation U can be characterized by its
singular value decomposition:

r∑
j=1

pj(U)σj(U)
(
qj(U)

)T
(4)

where r = min{k, d}, pj(U) ∈ Rk and qj(U) ∈ Rd are
singular vectors of U, and σj(U) is the jth singular value
of U. It is interesting to note that all the singular values
are real and non-negative. With loss of generality, we as-
sume that σ1(U) ≥ σ2(U) ≥ · · · ≥ σr(U). Therefore, the
complexity of U can be measured by the sum of its singular
values, i.e., how many singular values of U or singular vec-
tors pj(U) and qj(U) we should keep. When the largest r′

singular values of U are kept, the corresponding rank of U
is also equal to r′. Equivalently, the nuclear norm regular-
ization is employed to measure the complexity of U:

Φ(U) = ‖U‖∗ =

r∑
j=1

σj(U). (5)

We remark that the minimization of nuclear norm is a con-
vex optimization problem. In literatures, this regularization
has been applied to many applications such as dimension
reduction [31], multi-task learning [2], subspace structure
identification [20], multi-label learning [5] and etc.

Moreover, based on the minimization of nuclear norm,
the linear transformation of each data point x̂i can be given
by

Ux̂i =

r′∑
j=1

σj(U)[
(
qj(U)

)T
x̂i]pj(U). (6)

We note that this resulting vector is in the label space,
and it is a linear combination of label-component vec-
tors: p1(U),p2(U), · · · ,pr′(U) which correspond to the
largest r′ singular values in the singular value decompo-
sition of U. Therefore, the label correlations can be rec-
ognized and represented by these label-component vectors.

Meanwhile, we expect that even when there are some miss-
ing labels and the number of labeled training data is small,
the regularization term can help to identify correct labels
based on these label-component vectors.

In the data-fitting term (3), we search for a linear com-
bination of the label-component vectors {pj(U)}r′j=1 such
that it is close to yi. The optimal coefficient in the linear
combination contains two parts: one is the magnitude of the
singular value σj(U), the other is transformed feature value(
qj(U)

)T
x̂i which is determined by r′ feature-component

vectors {qj(U)}r′j=1. By using these feature-component
vectors and label-component vectors, the feature correla-
tions and label correlations can be recognized.

2.5. The Regularization of Smoothness

For label prediction, the main purpose of U is to prop-
agate the semantic information from feature space to label
space. Therefore, an instance x (as a feature vector) can be
labeled via its corresponding label vector y = Ux. It is
intuitive that the predicted label vectors should have ability
to keep the intrinsic structure among data feature vectors.
In other words, if two data points xi and xj are close in
the intrinsic geometry of the data distribution, then the pre-
dicted label vectors yi (i.e., Uxi) and yj (i.e., Uxj) are
also close to each other. This is referred to local invariance
assumption [3], which is well studied in manifold learning
theory. It plays an essential role in the development of vari-
ous kinds of algorithms including semi-supervised learning
algorithms [35] and matrix factorizations [6].

To model the intrinsic geometric structure among data,
a nearest neighbor graph is usually constructed with n ver-
tices (each vertex corresponding to one instance). For each
instance, its c nearest neighbors are selected according to
the similarity between instances, an edge is assigned be-
tween the instance and its neighbors. Typically, the heat
kernel weight with self-tuning technique (for parameter σ)
[32] is adopted here as the edge weight if two points are
connected ai,j = exp

(
−‖xi−xj‖2

σ

)
, otherwise ai,j = 0.

Then, we can generate an edge matrix A = [ai,j ] corre-
sponding to the c-nearest neighbor graph. Based on matrix
A, the local invariance assumption can be formulated via a
manifold regularization

Ψ(U) =
1

2

n∑
i,j=1

ai,j ‖Uxi−Uxj‖22 = tr((UX)L(UX)T ),

(7)
where L is graph Laplacian of matrix A defined as L =
D − A, and D is a diagonal matrix whose main diagonal
entries are column sums of A, i.e., di,i =

∑n
i=1 ai,j . In this

setting, both labeled and unlabeled data X = [X̂, X̌] can be
used to construct L.

By combining data fitting term in (3), the regularization



of complexity in (5) and the regularization of smoothness
in (7), the resulting Semi-supervised Low-Rank Mapping
model for multi-label learning (SLRM) can be developed:

min
U
||UX̂−Y||2F +λ||U||∗+γtr((UX)L(UX)T ). (8)

We remark that the resulting model is a convex optimization
problem as each term in the objective function is convex
with respect to U. The SLRM model is able to learn a map-
ping function U that can capture the correlations among la-
bels and the geometric structure among data in the feature
space. This property will make SLRM useful in handling
multi-label classification with a few labeled data and miss-
ing labels.

3. The Proposed Algorithm
The optimization problem (8) is convex and can be

solved by various methods. In this paper, we employ the
alternating direction method of multipliers [17] method to
find the optimal solution. By introducing an auxiliary vari-
able V ∈ Rk×d, we can convert (8) to the following equiv-
alent problem:

min
U,V

1
2‖UX̂−Y‖2F + λ‖V‖∗ +

γ

2
tr((UX)L(UX)T )

subject to U = V. (9)

The augmented Lagrange function of (9) is given by

min
U,V,Υ

1

2
‖UX̂−Y‖2F +

γ

2
tr((UX)L(UX)T ) +

β

2
||U−V||2F + tr(ΥT (U−V)) + λ||V||∗ (10)

where Υ ∈ Rk×d is the Lagrange multipliers, and β is a
positive number which can be adaptively updated [19]. Now
the above optimization problem can be minimized with re-
spect to each variable (U, V, and Υ) by fixing the other
two variables in an alternating manner.

3.1. The Update of U

When we fix V = V(m) and Υ = Υ(m), U can be
determined by solving the following problem:

min
U

1

2
||UX̂ −Y‖2F +

γ

2
tr((UX)L(UX)T ) +

β

2
||U−V(m)||2F + tr((Υ(m))T (U−V(m))) (11)

Note that ·(m) refers at the mth iteration index. According
to (11), U(m+1) can be updated by solving a linear system:

UX̂X̂T −YX̂T +γUXLXT +βU−βV(m)+Υ(m) = 0.

The closed form solution is given as follows:

U(m+1) := (X̂X̂T+γXLXT+βId)
−1(YX̂T+βV(m)−Υ(m)).

(12)

It is clear the inverse of (X̂X̂T + γXLXT + βId) exists as
the matrix is symmetric positive definite.

3.2. The Update of V

Similarly, when we fix U = U(m+1) and Υ = Υ(m), V
can be determined by solving the following problem:

min
V

β

2
||U(m+1)−V||2F+tr((Υ(m))T (U(m+1)−V))+λ||V||∗.

(13)
The optimization problem can be further reduced to the fol-
lowing form:

min
V

1

2

∥∥∥∥U(m+1) +
Υ(m)

β
−V

∥∥∥∥2
F

+
λ

β
||V||∗. (14)

It is obvious that this optimization problem is convex and
has a unique minimizer. The solution V(m+1) can be solved
via the singular value thresholding operator [7]:

V(m+1) := Dλ
β

[
U(m+1) +

Υ(m)

β

]
, (15)

where Dλ
β

[·] is the output matrix given by the singular vec-
tors of the input matrix and its modified singular values are
shrinkaged by the formula:

sgn

(
σi

(
U(m+1) +

Υ(m)

β

))
×

max

{∣∣∣∣U(m+1) +
Υ(m)

β

∣∣∣∣− λ

β
, 0

}
. (16)

3.3. The Update of Υ

Once having U = U(m+1) and V = V(m+1), we de-
termine Υ by considering the amount of violation of the
constraint U(m+1) = V(m+1). This amount will be used to
update Υ(m+1) via

Υ(m+1) := Υ(m) + β(U(m+1) −V(m+1)). (17)

3.4. Computational Complexity

For each iteration, updating U in (12) requires the con-
struction of (X̂X̂T+γXLXT+βId) and (YX̂T+βV(m)−
Υ(m)), which will cost O(d2nl + dn2 + kdnl). The in-
verse of (X̂X̂T + γXLXT + βId) with O(d3) complex-
ity is not necessary to be computed at each iteration. The
dominant cost for updating V in (15) is the computation of
the singular value thresholding operator, and its complexity
is min{O(dk2), O(d2k)}. Updating Υ in (17) only needs
matrix plus or minus operation and it costs O(dk). Con-
sequently, with alternating direction of multipliers method,
the complexity of solving SLRM is O(dk2 + d2nl + dn2 +
d3). We remark that the computational complexity can be
reduced when we consider inexact version of alternating di-
rection method of multipliers [21] or the suitable surrogate
functions [23].



3.5. The Related Work

According to Lemma 1 in [25], the nuclear norm of ma-
trix U ∈ Rk×d is equal to identifying the maximum margin
matrix factorization via

‖U‖∗ = arg min
U=PWT

1

2

(
‖W‖2F + ‖P‖2F

)
, (18)

where W ∈ Rd×b and P ∈ Rk×b are required matrices. For
multi-label learning problems, W can be taken as the new
representation of features in the latent space Rb, where each
row vector of W indicates a feature. P gives the new rep-
resentation of labels in the latent space Rb. Each row vector
of P represents a label. The model has ability to capture
the intrinsic information from both feature space and label
space. In order to identify the latent information in label
space, Tai and Lin [27] took the original label space as a
hypercube and mined its principal components by

max
P

tr(PTYYTP) s.t. PTP = I, (19)

where P ∈ Rk×b consists of the normalized eigenvectors
of YYT corresponding to its b largest eigenvalues. This
method is named as PLST. In [8], Chen and Lin extended it
to the CPLST model by integrating the labeled data infor-
mation X̂ via

max
P

tr(PTYX̂†X̂YTP) s.t. PTP = I, (20)

where X̂† is the pseudo-inverse of X̂. Similarly, P ∈ Rk×b
indicates the principal components of the labeled data.

Recently, Lin et al. [18] proposed an implicit label space
encoding method (FAIE), which jointly maximizes the re-
coverability of the label space and the predictability of the
feature space via

max
C

tr(CT (YTY +αX̂T (X̂X̂T )−1X̂)C) s.t.CTC = I,

(21)
where C ∈ Rnl×b indicates the relationships between data
instances and the latent space. We note that C cannot ex-
plicitly reflect the correlation between labels which is a
main point in multi-label learning. Based on the proposed
SLRM model and (18), C can be easily recovered via a
linear transformation X̂TW. We remark that these three
methods (PLST, CPLST, FAIE) have to predefine the size
of latent space (b) appropriately.

4. Experimental Results and Discussion
4.1. Datasets

We evaluated the performance of our method for multi-
label classification on four datasets including MSRC1,

1http://research.microsoft.com/en-us/projects/ObjectClassRecognition/

SUNattribute database [22] and two Mulan multimedia
datasets2 (Core5K and Mediamill). Among them, MSRC
images are represented via bag of words on sampled
patches. SUN 3 images are represented via low-level fea-
tures (gist descriptors). For Core5K and Mediamill, the pre-
processed data are directly downloaded from Mulan web-
site. Since we wish to study the mechanisms of multi-label
classification model in this work, we stuck with the fea-
ture set for each dataset through the experimental procedure
once it is chosen.

More detailed information about the data size can be
found in Table 1, where n is the number of instances, d
is the number of features, k is the number of labels/classes.
The cardinality column is defined as the average number
of labels per instance. In these datasets, the number of la-
bels varies from 23 to 374, the cardinality varies from 2.508
to 15.526, and the number of instances in different classes
changes in a large range (e.g. the class size in SUN varies
from 141 to 11878), thus it is a challenging task to predict
the label information for such multi-label datasets.

Dataset Domain n d k cardinality
MSRC image 591 512 23 2.508
Corel5K image 5000 499 374 3.522
SUN image 14240 512 102 15.526
Mediamill video 43907 210 101 4.376

Table 1. Multi-label dataset summary.

4.2. Methodology

In order to demonstrate the performance of the proposed
SLRM method, we take CPLST [8], FAIE [18], MLLOC
[15], MC [5], and MIML [29] in our comparison. We do
not include PLST [27] because earlier work [8] has shown
that they are inferior to CPLST. We run MLLOC4 with the
Matlab codes provided by the authors, and the other five
methods are implemented in Matlab (All are run on Win-
dows with 4G memory and 2Ghz CPU). Among them, the
first three methods train the classifiers only using the la-
beled dataset. Like SLRM, the later two methods (the semi-
supervised MC and active learning method MIML), take ad-
vantage of both labeled and unlabeled datasets.

For CPLST and FAIE, the number of reduced la-
tent space dimensions (b in Section 3.5) is selected from
{b0.05kc, b0.1kc, b0.2kc, b0.3kc, b0.4kc, b0.5kc} if k is
greater than 10, otherwise b is tuned in range [2, k] with
each step increment by 1. In the learning stage, both CPLST
and FAIE are coupled with linear regression for label pre-
diction. The regularization parameter in MLLOC and MC,
and the trade-off parameter in FAIE, λ and γ in SLRM are

2http://mulan.sourceforge.net/datasets-mlc.html
3https://cs.brown.edu/ gen/sunattributes.html
4http://lamda.nju.edu.cn/code MLLOC.ashx



Dataset Evaluation CPLST FAIE MLLOC MC MIML SLRM
AUC 0.7887 0.7780 0.5400 0.7857 0.8133 0.8253

MSRC Macro-F1 0.3317 0.3467 0.1048 0.2541 0.4083 0.4481
Micro-F1 0.5109 0.5357 0.3692 0.4196 0.5538 0.5890
Accuracy 0.3281 0.3344 0.2070 0.2353 0.2801 0.3866
RunTime (s) 0.059 0.141 33.49 35.55 687.78 0.731
AUC 0.7938 0.7793 0.7918 0.7563 0.7705 0.7969

Mediamill Macro-F1 0.0982 0.1266 0.1399 0.1269 0.1298 0.1413
Micro-F1 0.5785 0.6422 0.6381 0.6273 0.6412 0.6476
Accuracy 0.4264 0.4265 0.4326 0.4509 0.4465 0.4691
RunTime (s) 0.278 10.09 4928.37 2534.60 8953.65 0.790
AUC 0.5534 0.5547 0.5786 0.5317 0.5573 0.5762

Corel5k Macro-F1 0.0383 0.0411 0.0273 0.0419 0.0422 0.0497
Micro-F1 0.2241 0.2220 0.2230 0.2305 0.2322 0.2700
Accuracy 0.1256 0.1162 0.1332 0.1447 0.1306 0.1566
RunTime (s) 1.53 2.67 17021.46 1441.99 3957.35 15.36
AUC 0.7020 0.6950 0.6753 0.6760 0.6661 0.7126

SUN Macro-F1 0.2196 0.2630 0.1923 0.2507 0.2852 0.2687
Micro-F1 0.4605 0.4936 0.4441 0.4670 0.4521 0.5043
Accuracy 0.3009 0.3287 0.2877 0.3054 0.2954 0.3388
RunTime (s) 0.2050 1.1104 571.69 1927.21 4016.15 0.7182

Table 2. Comparison of multi-label learning performance output by four algorithms on four real world multimedia datasets. (The best
results are marked in dark and the second ones are underlined for each dataset.)

tuned from the candidate set {10−3, 10−2, 10−1, 1, 101,
102, 103}. For generating the edge matrix A in SLRM, the
number of nearest neighbors is set to 5, i.e., c = 5. The
number of groups in MLLOC and the size of compressed
label space in MIML are tuned with the same method as
b in CPLST. The hyper-parameters in MIML are assigned
according to the experimental setting in [29]. The parame-
ters of these methods are tuned by conducting 10-fold cross-
validation on the training set.

Based on the predicted label C ∈ Rk×nu and the ground
truth G ∈ Rk×nu for nu testing instances, the predic-
tion performance are evaluated with the widely-used met-
rics in the field of multi-label classification, i.e., label-
based Macro-F1, Micro-F1, instance-based Accuracy and
AUC [33]. The former three measures require predefining a
threshold to determine the number of labels for testing data.
Here the number of labels for each testing instance is set ac-
cording to its ground truth, i.e., |C·,i| = |G·,i|. In general,
it is hard to set a proper threshold value in real applications.
AUC (the area under the Receiver Operating Characteris-
tic ROC curve) is used. Here the ROC curve is plot with
respect to different threshold values.

4.3. Results and Discussion

In the first experiment on MSRC, Core5K, SUN and Me-
diamill datasets, the instances in each class are evenly and
randomly divided into 10 parts, one part for training and the
rest for testing. For the class with less than 10 instances, we
randomly select one instance for training and the rest for
testing. We perform each method 10 runs on each data, and

the average results are listed in Table 2. The best results of
each evaluation measure are marked in bold, and the second
best is underlined. According to the results, we can draw
the following observations. (i) The proposed SLRM out-
performs the supervised methods (CPLST, FAIE and ML-
LOC), which indicates that the unlabeled data are useful to
learn the mapping function from a feature space and a label
space. (ii) SLRM is superior to the semi-supervised method
MC and active learning method MIML, which shows that
SLRM provides a more reasonable strategy (the combina-
tion of a linear least square loss function with nuclear norm
and a manifold regularizer) to obtain the best of both labeled
and unlabeled data for effective exploiting label correlations
and intrinsic geometric structure among data.

4.3.1 Convergency

In order to investigate the convergence of the algorithm to
solve SLRM model, we plot the value of objective function
(9) on two large datasets (Corel5K and Mediamill) in Figure
1. It can be seen that the objective function value decreases
with respect to iterations, and the value approaches to be a
fixed value after a few iterations (less than 10 iterations for
Corel5K and less than 100 iterations for Mediamill).

The average running time of six methods on all datasets
are listed in Table 2. By comparing with MC and MIML,
the proposed SLRM method is pretty good in terms of com-
putational complexity. MIML has to re-train the classifier
after selecting the annotated points in each iteration, which
is very time consuming. MC handles the joint matrix con-



(a) Corel5K (b) Mediamill

Figure 1. Convergence of SLRM on Corel5K and Mediamill.

catenating the feature information X and label information
Y, thus it costs much more computational time. In the three
supervised methods, both CPLST and FAIE are efficient be-
cause they only consider the labeled data. The performance
of these two methods degrade significantly when there are
only a few training data (see the experimental results in Fig-
ure 2). When the dataset is large (e.g., Mediamill), FAIE
becomes time-consuming because it has to find the singular
vectors of an nl × nl matrix. As MLLOC has to learn the
local encoding for each class based on training data, it is
slower than the other methods especially when the size of
labels is large (e.g. Corel5K).

4.3.2 Effect of Training Data Size

(a) Accuracy on Corel5K (b) Macro-F1 on Corel5K

(c) Accuracy on Mediamill (d) Macro-F1 on Mediamill

Figure 2. Comparison of six methods under varying the labeled
data sizes on Corel5K and Mediamill.

Here we studied the label prediction performance under
varying the labeled data size. In the experiment, 1%-10%
of data in each category are employed as training set. For a
given percentage, a desired number of data are randomly
sampled ten times, and the resulting average “instance-
based Accuracy” and “label-based Macro-F1” on the un-
labeled data are recorded. We plotted these results on two

large datasets Corel5K and Mediamill in Figure 2. Obvi-
ously, the proposed method SLRM outperforms the other
methods. It is interesting that SLRM performs well even
when there are very few labeled data. This observation
demonstrates that SLRM is more useful. In particular, it
is very expensive to obtain more labeled data in real appli-
cations.

4.3.3 Handling Missing Label

Furthermore, we tested the performance of SLRM on han-
dling missing labels. The experimental data are generated
on datasets SUN and MSRC where the training and testing
sets are the same with that in Table 2. For each training
instance, we varied the ratio of missing labels (including
positive and negative). In order to avoid the appearance of
empty category and the instance with only negative labels,
at least one instance is kept for each category and at least
one positive label is kept for each instance. Then the label
vector for training instance is set via Yj,i = 0 if the (j, i)th
entry is missing, otherwise Yj,i = 1 if the ith instance be-
longs to the jth class, and Yj,i = −1 if the ith instance is
not in the jth class. SLRM is compared with FAIE and MC,
which are also capable of handling missing labels, and the
results are given in Figure 3. SLRM clearly shows superior
performance over other methods, especially on MSRC. We
remark that handling MSRC is more difficult than handling
SUN when partial labels are missing, because MSRC has
less average labels in each instance than SUN.

(a) Accuracy on SUN (b) Macro-F1 on SUN

(c) Accuracy on MSRC (d) Macro-F1 on MSRC

Figure 3. Comparison results under varying the ratio of missing
entries in label matrix (Y ) on SUN and MSRC.

Meanwhile, we empirically validated our contribution
that the mapping U has an ability to capture the label cor-
relations. Since U indicates the low rank representation
between features and labels, the correlations between la-
bels can be measured by computing UTU ∈ Rk×k. Ta-



Category Related Category Related Category Related Category Related
aeroplane road(0.157) building body(0.231) face body(0.425) sheep grass(0.072)

sky(0.133) car(0.217) building(0.231) tree(0.066)
bicycle tree (0.057) car building(0.152) flower face(0.119) sign road(0.089)

building(0.050) road(0.143) grass(0.081) building(0.067)
bird building(0.094) cat road(0.037) grass cow(0.168) sky tree(0.256)

grass(0.074) grass(0.020) sky(0.123) road(0.242)
boat water(0.166) chair grass(0.042) horse grass(0.016) tree road(0.271)

tree(0.142) building(0.039) tree(0.015) sky(0.256)
body face(0.425) cow grass(0.218) mountain water(0.084) water boat(0.168)

building(0.217) tree(0.106) boat(0.056) tree(0.142)
book face(0.133) dog road(0.069) road tree(0.271)

body(0.133) body(0.058) sky(0.242)

Table 3. Demonstration of label correlation identified by SLRM on MRSC data.

Figure 4. Image label prediction examples from MRSC data.

ble 3 gives the top two related categories for each category
in MSRC. As expected, the returned categories are seman-
tically related to the given category. Figure 4 lists four
examples. The first two images are correctly labeled by
SLRM while other methods can not. In the later two im-
ages, SLRM gave partial correct labels like other methods.
As marked in red circle and red labels below the images,
however, SLRM output the labels which are actually related
to the image contents. Therefore, we can say that the pro-
posed SLRM method is superior to state-of-the-art methods
on multi-label classification.

5. Conclusions and Future Work
For tackling multi-label classification problems, in this

paper, we have proposed a new model SLRM to identify
an effective mapping function from a feature space to a la-
bel space. The proposed SLRM model can capture the la-
bel correlations by enforcing nuclear norm regularization
on mapping function. SLRM also makes use of amounts
of unlabeled data to smooth the mapping function by con-
sidering the intrinsic geometric structure among. In order
to deal with large-scale data, an efficient algorithm based
on alternating direction method of multipliers is developed

to solve the proposed model. A series of experiments em-
pirically demonstrated that SLRM was superior to state-of-
the-art methods under varying the labeled data size and ra-
tio of missing labels, and indicated that the proposed algo-
rithm was efficient to predict label information for large-
scale multi-label data.

In the future, it would be interesting to consider nonlin-
ear loss function such as hinge loss and logistic loss instead
of the current linear square loss function to measure the la-
bel approximation error of labeled data.
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