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Abstract

In this paper, we present a novel partial signature match-
ing method using graphical models. Shape context features
are extracted from the contour of signatures to capture lo-
cal variations, and K-means clustering is used to build a
visual vocabulary from a set of reference signatures. To de-
scribe the signatures, supervised latent Dirichlet allocation
is used to learn the latent distributions of the salient re-
gions over the visual vocabulary and hierarchical Dirichlet
processes are implemented to infer the number of salient
regions needed. Our work is evaluated on three datasets
derived from the DS-I Tobacco signature dataset with clean
signatures and the DS-II UMD dataset with signatures with
different degradations. The results show the effectiveness of
the approach for both the partial and full signature match-
ing.

1. Introduction

In today’s electronic world, signatures are still widely
used as a method for authorization, identification, and in
some cases, document retrieval. This is due to the fact that
signatures are written in a ballistic manner and will carry
discriminative features that are difficult to forge by an ama-
teur [7] [9]. The signature matching problem aims to iden-
tify the author of a query signature, based on shape compar-
isons with reference signatures.

For matching we distinguish between two problems—
full signature matching, which assumes an accurate seg-
mentation and an author who has produced a complete and
consistent signature, and partial signature matching, where
we enroll a full reference signature, but may only have a
partial signature or even initials to match against the refer-
ence signature. A lot of work has shown great promise for
addressing the full signature matching problem using fea-
ture descriptors such as shape context [16] [8]. However,

partial signature matching remains an open problem. When
dealing with real applications, even though full signatures
are collected, many query signatures are only part of the
authors’ full name. This is due to multiple factors includ-
ing the fact that people sometimes only sign their first/last
names or initials, part of a signature may be missed when
performing signature extraction, or when the signature is
obscured by other information, such as the machine-printed
text in a signature block.

In general, state of the art methods for signature match-
ing can be grouped into global-shape based approaches and
point-level approaches. Global-shape approaches use holis-
tic shape representations to address this problem. For exam-
ple, Srihari et al. [12] used global shape structure and Lin et
al. [10] used Fourier descriptors. When working with full,
high quality signatures, these methods work efficiently and
accurately. However, global-shape methods work poorly
when degradations are present, or when the signatures be-
come occluded or are partial.

For point-level methods, signatures are modeled as con-
tour points or skeleton points, and features such as shape
context [4], or FREAK features [2] are used to describe the
relations between local points. Signatures are matched ei-
ther by computing the point-wise correspondences of two
signatures or by comparing high-level features built for each
signature. Du et al. [8] clustered all features of contour
points and then built a term-frequency histogram for each
signature as the high-level feature. Nearest neighbor search
was then used to find the closest sample for a query sig-
nature. This method is fast and efficient, but it still does
not work on partial signatures as local information is used
together to build holistic features for each signature. Zhu
et al. [16] compared all pairs of points between each pair
of signatures to form global weights in the training stage.
Each query signature is then compared point-wise with all
samples to find the closest match. This method can toler-
ate a low degree of variation, which makes it more robust
to the partial matching problem, but it does not scale to

xianzhi@umiacs.umd.edu
doermann@umiacs.umd.edu
wamageed@isi.edu


large datasets since it is computationally expensive due to
the pairwise comparisons.

To address the partial signature matching problem, we
developed a method based on the combination of super-
vised latent Dirichlet allocation (sLDA) [5] and hierarchical
Dirichlet processes (HDP) [13]. SLDA was first developed
as a statistical model of labeled documents, derived from la-
tent Dirichlet allocation (LDA) [6]. Unlike LDA, in sLDA,
each document is paired with a label. Topic distributions
are estimated over the vocabulary and relation between top-
ics and labels are discovered in the training stage. For an
unlabeled document, the label is regressed from its topic
structure. In our formulation, a “signature” corresponds to
a “document”, a “salient region” corresponds to a “topic”,
an “observation” corresponds to a “word”, and an “author-
ship” corresponds to a “label”.

In our approach, sLDA is first used to discover the salient
regions in all training signatures. A salient region is a dis-
tribution over the features in the visual vocabulary, which
groups similar co-occurring observations. Each author is
modeled as a combination of all salient regions with differ-
ent proportions. For a query signature, classification is per-
formed by computing the salient region proportions for the
signature based on observations. Further, instead of guess-
ing the number of salient regions empirically, HDP is used
to estimate the number needed for the given dataset.

We organize this paper as follows. Section 2 describes
how we use observations for each signatures to build a vo-
cabulary over all signatures. Section 3 provides a detailed
description of how to build the supervised topic models and
how HDP is used to estimate the number of salient regions.
Section 4 discusses the experiments and results, and con-
clusion and discussions are provided in Section 5.

2. Observation and vocabulary building
In this section, we describe how signatures are modeled

as a group of observations.

2.1. Partial shape context feature extraction

The first step of modeling signatures as a group of ob-
servations is to find a proper feature descriptor. As we are
working with 2-D binary shapes, we want to find a fea-
ture descriptor that captures the relations between points in
the binary shapes while preserving the local information be-
tween full and partial signatures. In this case, popular fea-
tures like SIFT [11] and SURF [3] are not suitable since
they use gradient information of feature points which is not
informative with binary shapes. We therefore use shape
context features, a feature designed for 2-D shape, which
describes the relations between nearby points while toler-
ating slight shape distortion. This is especially important
for the signature matching problem since even high-quality
signatures from same author may have slight differences.

To build observations, we first extract contour points
from each signature proportional to the total length of the
contour. The result is that partial signature will have similar
contour points as its corresponding part in the full signature.
For each contour point ci, a r ∗ θ log-polar space is formed
around it with uniform bins. A histogram si is built by cal-
culating the number of nearby points that fall in each bin in
a certain order, based on the relative distance and angle of
the two points, as shown in Equation (1).

si = [si(1), si(2), ..., si(n)]

si(k) = # {p : p∈bin(k), p6=ci}
(1)

where n = r ∗ θ is the total number of histogram bins, and
p represents contour points. In order to make shape context
applicable to partial signature matching, instead of normal-
izing the pairwise point distances within each signature, we
normalize the pairwise point distances for all possible point
pairs in all signatures by dividing by the mean value D̄, as
shown in Equation (2).

D̄ = (

Nsig∑
l=1

∑
i,j∈sl

D(pi, pj))/Npair

Dnorm(pi, pj) = D(pi, pj)/D̄

(2)

where D(pi, pj) represents the distance between two points
pi and pj in signature sl, Nsig is the total number of sig-
natures, and Npair is the total number all possible pairs of
points in all signatures. Since the size of log-polar space is
fixed for all signatures, partial signatures have shape con-
text features similar to a corresponding full signature, as
illustrated in Figure 1.

2.2. Building the visual vocabulary

After extracting contour points and computing shape
context features, the next step is to build the visual vocab-
ulary for all signatures. One intuitive way is to cluster all
contour points and treat each cluster label as one observa-
tion. The vocabulary consists of all the cluster labels. For
each signature, the number of contour points being classi-
fied into one cluster is regarded as the appearance frequency
of this observation.

In our method, we use K-means clustering. A histogram
ht for the tth signature is formed to indicate the appearance
frequencies of all observations, as shown in Equation (3).

ht = [ht(1), ht(2), ..., ht(K)]

ht(k) = # {p : p∈Cluster(k), p∈Sig(t)}
(3)

Finally, signatures are represented by an observation-
frequency histograms.



Figure 1. Shape context features for three signatures. The first
row shows a full signature and the log-polar space of the shape
context features. The second row shows its partial signature and
the log-polar space by using the standard shape context features.
The third row shows the same partial signature and the log-polar
space by using our modified shape context features.

3. Supervised topic models for partial
signature-matching

In this section, we build a supervised topic model for the
partial signature matching problem and briefly review the
variational inference solution based on the work of Wang et
al. [14].

3.1. Building supervised topic model

For our problem, the generative process for the nth ob-
servation in the tth signature is given as follows:

1. For the tth signature, draw salient region proportions
θt from Dir(α)

2. For the nth observation:

(a) Draw a salient region assignment St,n from
Mult(θt)

(b) Draw an observation Ot,n from Mult(βSt,n)

Figure 2. SLDA model for our problem.

3. Draw authorship variable At from N(ηᵀS̄t, σ
2)

Dir(·), Mult(·), N(·) represent the Dirichlet distribu-
tion, the Multinomial distribution, and the Normal distri-
bution respectively. α is an R-dimensional hyperparameter
for the Dirichlet distribution with R being the number of
salient regions. β = [β1, β2, ..., βR], where each βr is the
distribution of the salient region r over the vocabulary, and
S̄t is the mean of the salient regions of the tth signature.
With only observations and authorship given, we want to
estimate α, β, η, σ2. The model is shown in Figure 2.

The variational EM algorithm [14] is used to solve the
sLDA model. Here we give a brief description.

By introducing the free variational parameters γ and
φ, the posterior distribution p(θ, S|O,A, α, β, η, σ2) is ap-
proximated by Equation (4).

q(θ, S|γ, φ) = q(θ|γ)

N∏
n=1

q(Sn|φn) (4)

Here γ is a R-dimensional variational Dirichlet hyperpa-
rameter that governs the salient region distribution of each
signature. We can regard it as an approximation for α in the
original model. φ = [φ1, φ2, ..., φNt

] is an approximation
to θ, but specific for each observation.

The variational EM algorithm works as follows: In the
E-step, γ and φ are computed to minimize the KL diver-
gence between the true posterior and the approximation. In
the M-step, each of the salient regions βr is estimated by
counting how many times each observation is assigned to
this salient region among all signatures. η and σ2 are esti-
mated by the relationships between salient regions and the
labels for all training signatures. For a new signature, the
label is predicted by Equation (5).

E[A|O,α, β, η, σ2] = ηᵀestE[S|O,α, β] = ηᵀestφest (5)

For more details about the algorithm in this section please
refer to [6] [14] [5].

3.2. HDP for salient region estimation

In LDA and sLDA, the number of salient regions needs
to be prefixed and it is always chosen empirically. When



processing new and massive data, it is not possible to eas-
ily choose an optimal number and it is also very expensive
to reprocess the massive data multiple times to find out the
optimal number. To solve this problem, Teh [13] provided a
new topic model structure called hierarchical Dirichlet pro-
cesses, which lets the data estimate the number of salient
regions needed.

The main difference between HDP and standard LDA
lies in the model structure. In HDP, each set of data (signa-
tures in our case) has its own mixture model with random
probability measure Gt. Gt’s are distributed as a Dirithlet
process with a global base distribution G0. G0 itself is also
distributed as a Dirichlet process.

Gt ∼ DP (α0, G0) (6)

G0 ∼ DP (γ,H) (7)

where α0, γ are the concentration parameters, and H is
the base distribution for G0.

A straightforward way to explain HDP is using the Chi-
nese restaurant franchise process. We give a brief introduc-
tion as follows: Let θt,n be the salient region for the nth ob-
servation in the tth signature, ψt,r’s be the existing salient
regions for signature t, Nt,r be the number of observations
in signature t under salient region r, Mt be the number of
salient regions used in signature t. For a new observation,
the salient region assignment is given as follows:

θt,n|θt,1, ..., θt,n−1, α0, G0 ∼
Mt∑
r=1

Nt,r
n− 1 + α0

δψt,r
+

α0

n− 1 + α0
G0

(8)

The salient region of a new observation can be either
an existing salient region within this signature, which is a
draw from the first summation term on the right-hand side
of Equation (8) with a probability proportional to the num-
ber of observations under that salient region, or can be a new
salient region with probability given by the second term on
the right-hand side of Equation (8). If a new salient region
is needed for this observation, we draw one salient region
ψt,r from G0 and increase Mt by one as follows:

ψt,r|ψ1,1, ..., ψt,r−1, γ,H ∼
R∑

r0=1

Mr0

M + γ
δφr0

+
γ

M + γ0
H

(9)

where Mr0 is the number of times salient region r0 is
used in all signatures and M is the total number of times all
salient regions are used in all signatures. If the first term of
the right-hand side of Equation (9) is chosen, the new salient
region for θt,n is picked among the existing salient regions

with a probability proportional to the number of times one
salient region is used in all signatures. If the second term
is chosen, a new salient region is introduced and the total
number of salient regions is increased by one. For more
details about the algorithm, please refer to [13] [15].

4. Experiments and results

4.1. Datasets

Two popular datasets for the signature matching prob-
lem are the DS-I Tobacco signature dataset and the DS-II
UMD signature dataset [1]. The DS-I Tobacco signature
dataset contains 189 relatively clean and high-quality sig-
natures from 63 authors, with three per author. All the
signatures are full signatures, meaning each contains the
full name of the author. The DS-II UMD signature dataset
contains 26661 signatures from 887 authors. It is a more
challenging and a more realistic dataset since the signatures
are extracted from the Tobacco litigation corpus, contain-
ing memos and letters. It is a mixture of both full signa-
tures and partial signatures as many signatures are partial
signatures or initials. Moreover, signatures in this dataset
have other different kinds of degradations such as: signa-
tures with low-quality; machine-printed texts like address
and date that appear in the signature block; occluded signa-
tures; and signatures are too simple to be classified.

Our method is tested on two partial signature datasets
and one full signature dataset. The two partial signature
datasets are built based on the DS-I Tobacco signature
dataset and the DS-II UMD signature dataset. We refer to
them as the DS-I partial dataset and DS-II partial dataset.
The full signature dataset is the DS-I Tobacco signature
dataset itself.

DS-I partial dataset: As there are no partial signature
datasets which contain clean and high-quality partial sig-
natures, so we manually selected the DS-I partial set from
the DS-I Tobacco signature dataset by clipping out the first
names of all full signatures. Full signatures are used to train
and partial signatures are used to test in the experiment.
Samples from the DS-I partial set are shown in Figure 3.

DS-II partial dataset: This dataset contains 495 full
signatures for training from 495 authors and 1732 signa-
tures contain both partial and full signatures for testing. To
build the DS-II partial dataset, we use authors in the DS-
II UMD dataset with at least one partial signature. Here
we define a partial signature as follows: For each signature,
when compared to a full sample, if any part that should be-
long to the full signature is missing, we consider it to be
a partial signature. We didn’t test on the whole dataset be-
cause the number of partial signatures is relatively too small
compared to the number of full signatures. Due to the lim-
ited samples in this dataset, we only pick one full signature
per author to train (which is the usual case in real life ap-



Figure 3. Sample signatures in DS-I partial dataset. Left column
shows three full signatures. Right column shows their partial sig-
natures.

Figure 4. Sample signatures in DS-II partial dataset. Left column
shows five full signatures. Right column shows their partial signa-
tures with different kinds of degradations.

plications) and use other signatures (may contain both full
and partial signatures) to test. Each author has at least one
and at most 30 signatures for testing. Samples from DS-II
partial dataset are given in Figure 4.

4.2. Evaluation protocol

In our experiments, the top-N rank accuracy is used for
evaluation. Top-N rank strategy means for each query sig-
nature, in the prediction stage, if the full signature sample of
the true author appears in any position of the firstNth ranks,
the top-N rank accuracy for that sample is set to 1. The total
top-N rank accuracy is the mean of all query signatures.

Figure 5. Performance curves on DS-I partial dataset.

Top-1 Top-3 Top-5 Top-10
LSH 0.175 0.249 0.307 0.487
Pairwise matching <0.05 <0.05 <0.05 <0.05
Our method 0.878 0.921 0.931 0.958

Table 1. Results on DS-I partial dataset

4.3. Results on DS-I partial dataset

We normalize the height of each signature to the mean
height of all training signatures and set the widths accord-
ingly to preserve the aspect ratio. In this experiment, the
heights of all signatures are fixed to 182. For shape context
features, r = 5 and θ = 12 are used. As we have three
signatures from each author in this dataset, each time we
pick two full signatures to train and the partial signature of
the rest one to test. We run three rounds to cover all the
signatures in both training and testing stages. The average
accuracy is reported.

First we run HDP on the DS-I parital dataset to estimate
the number of salient regions. R = 90 is suggested after
1000 iterations. For K in K-means algorithm, empirically
we choose K = 1300. Due to the random initialization
of K-means algorithm, we rerun the whole experiment 10
times. The term most frequently appears on the 10 ith’s
rank is taken. Our method is compared with Du et al. [8]
and Zhu et al. [16]. We refer to them as LSH method and
pairwise matching method. Results are given in Figure 5
and Table 1.

Our method achieves 87.8% top-1 accuracy on this
partial dataset, which significantly outperforms the LSH
method by 17.5% and the pairwise matching method. The
pairwise matching method reported a less than 5% top-1
rank accuracy on this dataset due to incapability of deal-
ing with partial signature-matching problem and insuffi-
cient training samples.



Figure 6. Performance curves on DS-I Tobacco full dataset.

Top-1 Top-3 Top-5 Top-10
LSH 0.874 0.906 0.923 0.928
Pairwise matching <0.1 <0.1 <0.1 <0.1
Our method 0.921 0.947 0.958 0.974

Table 2. Results on DS-I Tobacco full dataset

4.4. Results on DS-I Tobacco full signature dataset

In order to show that our method also works well on a
full signature dataset, we test on the DS-I Tobacco full sig-
nature dataset. We run this experiment three times and re-
port the average accuracy as we did in the previous experi-
ment except that the full signatures are used to test. We use
the same setups as the previous experiment, since the train-
ing stages are identical. The results are compared to the
LSH method and the pairwise matching method reported
in [8]. Figure 6 and Table 2 show the results.

Our 92.1% top-1 rank accuracy outperforms both of the
previous methods on this dataset. This proves that our
method is not only specifically designed for partial signa-
ture matching, but also works well on full signature dataset.

4.5. Results on DS-II partial dataset

This dataset is extremely challenging since we only have
one training sample per class to perform the 495-class clas-
sification task. To setup the experiment, the heights of all
signatures are fixed to 166, and r = 5 and θ = 12 shape
context features are used. 230 salient regions are estimated
from HDP after 1000 iterations, and empirically K = 1500
is chosen. Figure 7 and Table 3 show the results from our
method and the LSH method. Our algorithm achieve 37.8%
top-1 rank accuracy, which outperforms the LSH method by
23.1%. We didn’t compare to the pairwise matching method
since it is not scalable to large datasets.

4.6. Effects of parameters

The two parameters that have impact on the performance
are the number of centers K in K-means algorithm and the

Figure 7. Performance curves on DS-II partial dataset.

number of salient regions R in sLDA. We test on different
values ofK andR to see how they change the performance.

Number of clusters: The choice of K depends on the
data and the size of the dataset. A larger value ofK tends to
over-classify the data and make the classification more com-
putationally intensive. A smaller value of K tends group
incorrect data together. The results of K versus top-1 rank
accuracy graphs on DS-I partial dataset and DS-II partial
dataset are given in Figure 8 and Table 4, and Figure 9 and
Table 5, at fixed R = 90 and R = 230 respectively.

Figure 8. The impact of K on DS-I partial dataset.

Number of salient regions: The choice ofR depends on
the size of vocabulary and the observations. HDP provides
us an alternative way to choose R. The top-1 rank accu-
racy comparisons between R predicted by HDP and other
R values on DS-I partial dataset and DS-II partial dataset
are given in Figure 10 and Table 6, and Figure 11 and Table
7, at K = 1300 and K = 1500 respectively.

Top-1 Top-3 Top-5 Top-10 Top-25
LSH 0.231 0.279 0.321 0.379 0.465
Our method 0.378 0.487 0.534 0.590 0.660

Table 3. Results on DS-II partial dataset



#K 100 300 500 700 900 1100 1300 1500 1700 1900
Accuracy 0.624 0.762 0.799 0.857 0.809 0.857 0.878 0.867 0.857 0.857

Table 4. Results from different K at R = 90 on DS-I partial set

#K 100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500
Accuracy 0.290 0.334 0.335 0.327 0.337 0.303 0.358 0.378 0.335 0.335 0.314 0.310 0.301

Table 5. Results from different K at R = 230 on DS-II partial set

Figure 9. The impact of K on DS-II partial dataset.

Figure 10. The impact of R and comparisons between different R
and R predicted by HDP on DS-I partial dataset.

From Figure 11 we see HDP overfit the training samples
of DS-II partial dataset with a large value of R. This is due
to the variety of the training samples.

4.7. Failure examples

There are several common cases in the DS-II partial
dataset that will lead to a mismatching, such as the full sig-
nature of a query partial signature is close to another sig-
nature, the partial signature is more similar to the full sig-
nature of another author, signatures are not informative be-
cause of too many handwritten texts, and signatures are so
simple that limited information can be collected. Figure 12
shows four failure cases.

Figure 11. The impact of R and comparisons between different R
and R predicted by HDP on DS-II partial dataset.

Figure 12. Failure examples for four query signatures. For each
box, the first signature is a query signature; the middle signature is
the incorrect match; the last signature is the true full signature.

5. Conclusion and discussions

We presented an effective and scalable partial signature
matching method based on modified shape context features
and topic modeling. The motivation is to deal with real sig-



#R 10 30 50 70 90 110 130 150
Accuracy 0.317 0.582 0.704 0.788 0.878 0.864 0.878 0.870

Table 6. Results from different R at K = 1300 on DS-I partial dataset

#R 10 30 50 70 90 110 130 150 170 190 210 230 250
Accuracy 0.105 0.203 0.254 0.298 0.337 0.342 0.354 0.360 0.364 0.370 0.378 0.378 0.370

Table 7. Results from different R at K = 1500 on DS-II partial dataset

nature matching applications when partial signatures are en-
countered. We modified shape context features to fit the par-
tial matching problem better. K-means clustering algorithm
is used to build the observations and vocabulary, sLDA is
used to model each author as proportions of the hidden
salient regions, and HDP is used to indicate the proper num-
ber of salient regions needed for each dataset.

Three experiments were conducted on two partial signa-
ture datasets and one full signature dataset. Our method out-
performed previous methods on all datasets, which demon-
strated that it works well on both partial and full signature
datasets.

For further work, a better way to select the number of
clusters to build the vocabulary is needed. We are also ex-
ploring effective methods to address other kinds of degra-
dations.
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